Suppr超能文献

在流线空间中对白质束进行稳健且高效的线性配准。

Robust and efficient linear registration of white-matter fascicles in the space of streamlines.

机构信息

Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC J1K 2R1, Canada.

Centro de Investigacion en Matematicas, Guanajuato, Gto, Mexico.

出版信息

Neuroimage. 2015 Aug 15;117:124-40. doi: 10.1016/j.neuroimage.2015.05.016. Epub 2015 May 16.

Abstract

The neuroscientific community today is very much interested in analyzing specific white matter bundles like the arcuate fasciculus, the corticospinal tract, or the recently discovered Aslant tract to study sex differences, lateralization and many other connectivity applications. For this reason, experts spend time manually segmenting these fascicles and bundles using streamlines obtained from diffusion MRI tractography. However, to date, there are very few computational tools available to register these fascicles directly so that they can be analyzed and their differences quantified across populations. In this paper, we introduce a novel, robust and efficient framework to align bundles of streamlines directly in the space of streamlines. We call this framework Streamline-based Linear Registration. We first show that this method can be used successfully to align individual bundles as well as whole brain streamlines. Additionally, if used as a piecewise linear registration across many bundles, we show that our novel method systematically provides higher overlap (Jaccard indices) than state-of-the-art nonlinear image-based registration in the white matter. We also show how our novel method can be used to create bundle-specific atlases in a straightforward manner and we give an example of a probabilistic atlas construction of the optic radiation. In summary, Streamline-based Linear Registration provides a solid registration framework for creating new methods to study the white matter and perform group-level tractometry analysis.

摘要

今天,神经科学界非常感兴趣地分析特定的白质束,如弓状束、皮质脊髓束,或最近发现的斜束,以研究性别差异、偏侧化和许多其他连接应用。出于这个原因,专家们花费时间使用从扩散 MRI 束追踪获得的流线手动分割这些束。然而,到目前为止,几乎没有可用的计算工具可以直接注册这些束,以便可以在人群中分析和量化它们的差异。在本文中,我们引入了一种新颖、强大和高效的框架,直接在流线空间中对齐流线束。我们称这个框架为基于流线的线性配准。我们首先表明,该方法可以成功地用于对齐单个束以及整个大脑的流线。此外,如果作为许多束之间的分段线性配准使用,我们表明我们的新方法系统地提供比白质中基于图像的最新非线性配准更高的重叠(Jaccard 指数)。我们还展示了如何以简单的方式使用我们的新方法来创建束特定的图谱,并给出了视辐射概率图谱构建的示例。总之,基于流线的线性配准为创建新的方法来研究白质并进行组水平束追踪分析提供了一个可靠的配准框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验