Shuai Yuhan, Chandio Bramsh Qamar, Feng Yixue, Villalon-Reina Julio E, Nir Talia M, Ching Christopher R K, Gari Iyad Ba, Thomopoulos Sophia I, Alibrando Jonathan Davis, John John P, Venkatasubramanian Ganesan, Jahanshad Neda, Thompson Paul M
Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
Multimodal Brain Image Analysis Laboratory, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India.
bioRxiv. 2025 Aug 19:2025.08.19.669949. doi: 10.1101/2025.08.19.669949.
In diffusion MRI-based tractography, deterministic and probabilistic algorithms reconstruct white matter using distinct strategies, yet their impact on bundle morphology remains uncertain. Using bundle shape similarity analysis, we compared both methods for the left arcuate fasciculus (AF_L) (The left arcuate fasciculus is a critical white matter tract that connects language comprehension and production areas in the human brain, enabling fluent language processing) across four datasets: Alzheimer's Disease Neuroimaging Initiative (ADNI), Human Connectome Project-Aging (HCP-A), National Institute of Mental Health and Neurosciences (NIMHANS), and Pediatric Imaging, Neurocognition, and Genetics (PING). Probabilistic tractography consistently produced higher inter-subject shape similarity, by capturing broader anatomical trajectories and enhancing reproducibility. However, this extensive coverage may obscure subtle pathological variations critical for clinical detection. Bundle shape similarity analysis with atlas corroborated these findings, showing stronger alignment for probabilistic tracking and highlighting its utility in quantitative quality control. These results emphasize the need to balance morphological consistency with sensitivity to neuroanatomical variation when selecting tractography methods for research and clinical applications.
在基于扩散磁共振成像的纤维束成像中,确定性算法和概率性算法采用不同策略重建白质,但其对纤维束形态的影响仍不确定。我们使用纤维束形状相似性分析,在四个数据集(阿尔茨海默病神经影像倡议组织(ADNI)、人类连接组计划-衰老(HCP-A)、国家心理健康和神经科学研究所(NIMHANS)以及儿科影像、神经认知与遗传学(PING))中比较了两种方法对左侧弓状束(AF_L)(左侧弓状束是连接人类大脑语言理解和产生区域的关键白质纤维束,可实现流畅的语言处理)的重建效果。概率性纤维束成像通过捕捉更广泛的解剖轨迹并提高可重复性,始终产生更高的个体间形状相似性。然而,这种广泛的覆盖范围可能会掩盖对临床检测至关重要的细微病理变化。与图谱进行的纤维束形状相似性分析证实了这些发现,显示概率性追踪的对齐更强,并突出了其在定量质量控制中的效用。这些结果强调,在为研究和临床应用选择纤维束成像方法时,需要在形态一致性与对神经解剖变异的敏感性之间取得平衡。