Tsuchiya Takashi, Ochi Masanori, Higuchi Tohru, Terabe Kazuya, Aono Masakazu
†International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
‡Department of Applied Physics, Faculty of Science, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
ACS Appl Mater Interfaces. 2015 Jun 10;7(22):12254-60. doi: 10.1021/acsami.5b02998. Epub 2015 May 29.
An all-solid-state electric-double-layer transistor (EDLT) with a Y-stabilized ZrO₂ (YSZ) proton conductor/SrTiO₃ (STO) single crystal has been fabricated to investigate ionic conductivity effect on the response speed, which should be a key parameter for development of next-generation EDLTs. The drain current exhibited a 4-order-of-magnitude increment by electrostatic carrier doping at the YSZ/STO interface due to ion migration, and the behavior strongly depended on the operation temperature. An Arrhenius-type plot of the ionic conductivity (σ(i)) in the YSZ and t(c)⁻¹, which is a current-rise time needed for charge accumulation at the YSZ/STO interface, shows a synchronized variation, indicating a proportional relationship between the two parameters. Analysis of the σ(i)-t(c) diagram shows that, in contrast to conventional EDLTs, the response speed should reach picosecond order at room temperature by using extreme miniaturization and superionic conductors. Furthermore, the diagram indicates that plenty of solid electrolytes, which have not been used due to the lack of criteria for evaluation, can be a candidate for all-solid-state EDLTs exceeding the carrier density of conventional EDLTs, even though the response speed becomes comparably lower than those of FETs.
一种具有Y稳定的ZrO₂(YSZ)质子导体/ SrTiO₃(STO)单晶的全固态电双层晶体管(EDLT)已被制造出来,以研究离子电导率对响应速度的影响,这应该是下一代EDLT发展的关键参数。由于离子迁移,漏极电流在YSZ / STO界面处通过静电载流子掺杂呈现出4个数量级的增加,并且该行为强烈依赖于工作温度。YSZ中的离子电导率(σ(i))与t(c)⁻¹(这是在YSZ / STO界面处电荷积累所需的电流上升时间)的Arrhenius型图显示出同步变化,表明这两个参数之间存在比例关系。对σ(i)-t(c)图的分析表明,与传统的EDLT相比,通过使用极端小型化和超离子导体,响应速度在室温下应达到皮秒级。此外,该图表明,尽管响应速度变得比FET的响应速度低得多,但由于缺乏评估标准而未被使用的大量固体电解质可以成为超过传统EDLT载流子密度的全固态EDLT的候选材料。