Suppr超能文献

基于随机多边形模型的结肠组织学图像腺体结构分割

A Stochastic Polygons Model for Glandular Structures in Colon Histology Images.

出版信息

IEEE Trans Med Imaging. 2015 Nov;34(11):2366-78. doi: 10.1109/TMI.2015.2433900. Epub 2015 May 15.

Abstract

In this paper, we present a stochastic model for glandular structures in histology images of tissue slides stained with Hematoxylin and Eosin, choosing colon tissue as an example. The proposed Random Polygons Model (RPM) treats each glandular structure in an image as a polygon made of a random number of vertices, where the vertices represent approximate locations of epithelial nuclei. We formulate the RPM as a Bayesian inference problem by defining a prior for spatial connectivity and arrangement of neighboring epithelial nuclei and a likelihood for the presence of a glandular structure. The inference is made via a Reversible-Jump Markov chain Monte Carlo simulation. To the best of our knowledge, all existing published algorithms for gland segmentation are designed to mainly work on healthy samples, adenomas, and low grade adenocarcinomas. One of them has been demonstrated to work on intermediate grade adenocarcinomas at its best. Our experimental results show that the RPM yields favorable results, both quantitatively and qualitatively, for extraction of glandular structures in histology images of normal human colon tissues as well as benign and cancerous tissues, excluding undifferentiated carcinomas.

摘要

在本文中,我们提出了一种针对苏木精和伊红染色的组织切片组织学图像中腺体结构的随机模型,选择结肠组织作为示例。所提出的随机多边形模型(RPM)将图像中的每个腺体结构视为由随机数量的顶点组成的多边形,其中顶点表示上皮细胞核的近似位置。我们通过定义空间连通性和相邻上皮细胞核排列的先验以及腺体结构存在的似然来将 RPM 表述为贝叶斯推理问题。推理是通过可逆跳转马尔可夫链蒙特卡罗模拟进行的。据我们所知,所有现有的用于腺体分割的已发表算法主要用于健康样本、腺瘤和低级别腺癌。其中一种算法已被证明在最佳情况下可用于中级腺癌。我们的实验结果表明,RPM 可在正常人类结肠组织以及良性和癌组织的组织学图像中提取腺体结构方面产生定量和定性的有利结果,排除未分化癌。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验