Suppr超能文献

一种用于检测腺体结构的新型极空间随机场模型。

A novel polar space random field model for the detection of glandular structures.

出版信息

IEEE Trans Med Imaging. 2014 Mar;33(3):764-76. doi: 10.1109/TMI.2013.2296572.

Abstract

In this paper, we propose a novel method to detect glandular structures in microscopic images of human tissue. We first convert the image from Cartesian space to polar space and then introduce a novel random field model to locate the possible boundary of a gland. Next, we develop a visual feature-based support vector regressor to verify if the detected contour corresponds to a true gland. And finally, we combine the outputs of the random field and the regressor to form the GlandVision algorithm for the detection of glandular structures. Our approach can not only detect the existence of the gland, but also can accurately locate it with pixel accuracy. In the experiments, we treat the task of detecting glandular structures as object (gland) detection and segmentation problems respectively. The results indicate that our new technique outperforms state-of-the-art computer vision algorithms in respective fields.

摘要

在本文中,我们提出了一种新的方法来检测人体组织的微观图像中的腺体结构。我们首先将图像从笛卡尔空间转换为极坐标空间,然后引入一种新的随机域模型来定位腺体的可能边界。接下来,我们开发了一种基于视觉特征的支持向量回归器来验证检测到的轮廓是否对应于真正的腺体。最后,我们将随机域和回归器的输出组合起来,形成 GlandVision 算法,用于检测腺体结构。我们的方法不仅可以检测腺体的存在,还可以以像素精度准确地定位腺体。在实验中,我们分别将检测腺体结构的任务视为对象(腺体)检测和分割问题。结果表明,我们的新技术在各自的领域均优于最先进的计算机视觉算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验