Zhao Theodore, Gu Yu, Yang Jianwei, Usuyama Naoto, Lee Ho Hin, Kiblawi Sid, Naumann Tristan, Gao Jianfeng, Crabtree Angela, Abel Jacob, Moung-Wen Christine, Piening Brian, Bifulco Carlo, Wei Mu, Poon Hoifung, Wang Sheng
Microsoft Research, Redmond, WA, USA.
Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
Nat Methods. 2025 Jan;22(1):166-176. doi: 10.1038/s41592-024-02499-w. Epub 2024 Nov 18.
Biomedical image analysis is fundamental for biomedical discovery. Holistic image analysis comprises interdependent subtasks such as segmentation, detection and recognition, which are tackled separately by traditional approaches. Here, we propose BiomedParse, a biomedical foundation model that can jointly conduct segmentation, detection and recognition across nine imaging modalities. This joint learning improves the accuracy for individual tasks and enables new applications such as segmenting all relevant objects in an image through a textual description. To train BiomedParse, we created a large dataset comprising over 6 million triples of image, segmentation mask and textual description by leveraging natural language labels or descriptions accompanying existing datasets. We showed that BiomedParse outperformed existing methods on image segmentation across nine imaging modalities, with larger improvement on objects with irregular shapes. We further showed that BiomedParse can simultaneously segment and label all objects in an image. In summary, BiomedParse is an all-in-one tool for biomedical image analysis on all major image modalities, paving the path for efficient and accurate image-based biomedical discovery.
生物医学图像分析是生物医学发现的基础。整体图像分析包括分割、检测和识别等相互依存的子任务,传统方法分别处理这些子任务。在此,我们提出了BiomedParse,这是一种生物医学基础模型,能够跨九种成像模态联合进行分割、检测和识别。这种联合学习提高了各个任务的准确性,并实现了新的应用,例如通过文本描述对图像中的所有相关对象进行分割。为了训练BiomedParse,我们利用现有数据集中附带的自然语言标签或描述,创建了一个包含超过600万个图像、分割掩码和文本描述三元组的大型数据集。我们表明,BiomedParse在跨九种成像模态的图像分割方面优于现有方法,对形状不规则的对象有更大的改进。我们进一步表明,BiomedParse可以同时对图像中的所有对象进行分割和标注。总之,BiomedParse是一种用于所有主要图像模态的生物医学图像分析的一体化工具,为基于图像的高效准确的生物医学发现铺平了道路。