Suppr超能文献

一种用于跨九种模态对生物医学对象进行联合分割、检测和识别的基础模型。

A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities.

作者信息

Zhao Theodore, Gu Yu, Yang Jianwei, Usuyama Naoto, Lee Ho Hin, Kiblawi Sid, Naumann Tristan, Gao Jianfeng, Crabtree Angela, Abel Jacob, Moung-Wen Christine, Piening Brian, Bifulco Carlo, Wei Mu, Poon Hoifung, Wang Sheng

机构信息

Microsoft Research, Redmond, WA, USA.

Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.

出版信息

Nat Methods. 2025 Jan;22(1):166-176. doi: 10.1038/s41592-024-02499-w. Epub 2024 Nov 18.

Abstract

Biomedical image analysis is fundamental for biomedical discovery. Holistic image analysis comprises interdependent subtasks such as segmentation, detection and recognition, which are tackled separately by traditional approaches. Here, we propose BiomedParse, a biomedical foundation model that can jointly conduct segmentation, detection and recognition across nine imaging modalities. This joint learning improves the accuracy for individual tasks and enables new applications such as segmenting all relevant objects in an image through a textual description. To train BiomedParse, we created a large dataset comprising over 6 million triples of image, segmentation mask and textual description by leveraging natural language labels or descriptions accompanying existing datasets. We showed that BiomedParse outperformed existing methods on image segmentation across nine imaging modalities, with larger improvement on objects with irregular shapes. We further showed that BiomedParse can simultaneously segment and label all objects in an image. In summary, BiomedParse is an all-in-one tool for biomedical image analysis on all major image modalities, paving the path for efficient and accurate image-based biomedical discovery.

摘要

生物医学图像分析是生物医学发现的基础。整体图像分析包括分割、检测和识别等相互依存的子任务,传统方法分别处理这些子任务。在此,我们提出了BiomedParse,这是一种生物医学基础模型,能够跨九种成像模态联合进行分割、检测和识别。这种联合学习提高了各个任务的准确性,并实现了新的应用,例如通过文本描述对图像中的所有相关对象进行分割。为了训练BiomedParse,我们利用现有数据集中附带的自然语言标签或描述,创建了一个包含超过600万个图像、分割掩码和文本描述三元组的大型数据集。我们表明,BiomedParse在跨九种成像模态的图像分割方面优于现有方法,对形状不规则的对象有更大的改进。我们进一步表明,BiomedParse可以同时对图像中的所有对象进行分割和标注。总之,BiomedParse是一种用于所有主要图像模态的生物医学图像分析的一体化工具,为基于图像的高效准确的生物医学发现铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验