Suppr超能文献

具有近原子精度的自缔合跨膜螺旋蛋白的进化引导从头结构预测。

Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy.

作者信息

Wang Y, Barth P

机构信息

Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.

1] Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [2] Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [3] Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.

出版信息

Nat Commun. 2015 May 21;6:7196. doi: 10.1038/ncomms8196.

Abstract

How specific protein associations regulate the function of membrane receptors remains poorly understood. Conformational flexibility currently hinders the structure determination of several classes of membrane receptors and associated oligomers. Here we develop EFDOCK-TM, a general method to predict self-associated transmembrane protein helical (TMH) structures from sequence guided by co-evolutionary information. We show that accurate intermolecular contacts can be identified using a combination of protein sequence covariation and TMH binding surfaces predicted from sequence. When applied to diverse TMH oligomers, including receptors characterized in multiple conformational and functional states, the method reaches unprecedented near-atomic accuracy for most targets. Blind predictions of structurally uncharacterized receptor tyrosine kinase TMH oligomers provide a plausible hypothesis on the molecular mechanisms of disease-associated point mutations and binding surfaces for the rational design of selective inhibitors. The method sets the stage for uncovering novel determinants of molecular recognition and signalling in single-spanning eukaryotic membrane receptors.

摘要

特定蛋白质关联如何调节膜受体的功能仍知之甚少。构象灵活性目前阻碍了几类膜受体及相关寡聚体的结构测定。在此,我们开发了EFDOCK-TM,这是一种从共进化信息引导的序列预测自缔合跨膜蛋白螺旋(TMH)结构的通用方法。我们表明,使用蛋白质序列共变和从序列预测的TMH结合表面的组合,可以识别准确的分子间接触。当应用于多种TMH寡聚体时,包括具有多种构象和功能状态特征的受体,该方法对大多数靶点达到了前所未有的近原子精度。对结构未表征的受体酪氨酸激酶TMH寡聚体的盲预测为疾病相关点突变的分子机制和选择性抑制剂的合理设计的结合表面提供了一个合理的假设。该方法为揭示单跨膜真核膜受体中分子识别和信号传导的新决定因素奠定了基础。

相似文献

引用本文的文献

本文引用的文献

8
Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models.蛋白质中改进的接触预测:使用伪似然性推断Potts模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012707. doi: 10.1103/PhysRevE.87.012707. Epub 2013 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验