Sun Xue, Kroemer Nils B, Veldhuizen Maria G, Babbs Amanda E, de Araujo Ivan E, Gitelman Darren R, Sherwin Robert S, Sinha Rajita, Small Dana M
Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut 06520, The John B. Pierce Laboratory, New Haven, Connecticut 06519,
The John B. Pierce Laboratory, New Haven, Connecticut 06519, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511, Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden 01187, Germany.
J Neurosci. 2015 May 20;35(20):7964-76. doi: 10.1523/JNEUROSCI.3884-14.2015.
In rodents, food-predictive cues elicit eating in the absence of hunger (Weingarten, 1983). This behavior is disrupted by the disconnection of amygdala pathways to the lateral hypothalamus (Petrovich et al., 2002). Whether this circuit contributes to long-term weight gain is unknown. Using fMRI in 32 healthy individuals, we demonstrate here that the amygdala response to the taste of a milkshake when sated but not hungry positively predicts weight change. This effect is independent of sex, initial BMI, and total circulating ghrelin levels, but it is only present in individuals who do not carry a copy of the A1 allele of the Taq1A polymorphism. In contrast, A1 allele carriers, who have decreased D2 receptor density (Blum et al., 1996), show a positive association between caudate response and weight change. Regardless of genotype, however, dynamic causal modeling supports unidirectional gustatory input from basolateral amygdala (BLA) to hypothalamus in sated subjects. This finding suggests that, as in rodents, external cues gain access to the homeostatic control circuits of the human hypothalamus via the amygdala. In contrast, during hunger, gustatory inputs enter the hypothalamus and drive bidirectional connectivity with the amygdala. These findings implicate the BLA-hypothalamic circuit in long-term weight change related to nonhomeostatic eating and provide compelling evidence that distinct brain mechanisms confer susceptibility to weight gain depending upon individual differences in dopamine signaling.
在啮齿动物中,食物预测线索在无饥饿状态下也能引发进食行为(温加滕,1983年)。杏仁核与下丘脑外侧之间的通路断开会破坏这种行为(彼得罗维奇等人,2002年)。该神经回路是否会导致长期体重增加尚不清楚。我们对32名健康个体进行功能磁共振成像研究,结果表明,饱腹但不饥饿时杏仁核对奶昔味道的反应能正向预测体重变化。这种效应与性别、初始体重指数和循环中胃饥饿素的总水平无关,但仅在不携带Taq1A多态性A1等位基因拷贝的个体中存在。相比之下,D2受体密度降低的A1等位基因携带者(布卢姆等人,1996年),其尾状核反应与体重变化呈正相关。然而,无论基因型如何,动态因果模型支持在饱腹受试者中从基底外侧杏仁核(BLA)到下丘脑的单向味觉输入。这一发现表明,与啮齿动物一样,外部线索通过杏仁核进入人类下丘脑的稳态控制回路。相反,在饥饿期间,味觉输入进入下丘脑并驱动与杏仁核的双向连接。这些发现表明BLA - 下丘脑神经回路与非稳态进食相关的长期体重变化有关,并提供了令人信服的证据,即不同的脑机制会根据多巴胺信号的个体差异导致体重增加的易感性。