Costa Manon, Hauzy Céline, Loeuille Nicolas, Méléard Sylvie
CMAP, École Polytechnique, CNRS UMR 7641, Route de Saclay, 91128, Palaiseau Cedex, France.
Institute of Ecology and Environmental Sciences-Paris (UPMC-CNRS-IRD-INRA-UPEC-Paris Diderot), Université Pierre et Marie Curie, UMR 7618, Paris, France.
J Math Biol. 2016 Feb;72(3):573-622. doi: 10.1007/s00285-015-0895-y. Epub 2015 May 23.
We are interested in the impact of natural selection in a prey-predator community. We introduce an individual-based model of the community that takes into account both prey and predator phenotypes. Our aim is to understand the phenotypic coevolution of prey and predators. The community evolves as a multi-type birth and death process with mutations. We first consider the infinite particle approximation of the process without mutation. In this limit, the process can be approximated by a system of differential equations. We prove the existence of a unique globally asymptotically stable equilibrium under specific conditions on the interaction among prey individuals. When mutations are rare, the community evolves on the mutational scale according to a Markovian jump process. This process describes the successive equilibria of the prey-predator community and extends the polymorphic evolutionary sequence to a coevolutionary framework. We then assume that mutations have a small impact on phenotypes and consider the evolution of monomorphic prey and predator populations. The limit of small mutation steps leads to a system of two differential equations which is a version of the canonical equation of adaptive dynamics for the prey-predator coevolution. We illustrate these different limits with an example of prey-predator community that takes into account different prey defense mechanisms. We observe through simulations how these various prey strategies impact the community.
我们对自然选择在捕食者 - 猎物群落中的影响感兴趣。我们引入了一个基于个体的群落模型,该模型考虑了猎物和捕食者的表型。我们的目标是理解猎物和捕食者的表型共同进化。群落作为一个具有突变的多类型生死过程而进化。我们首先考虑无突变过程的无限粒子近似。在此极限下,该过程可以由一个微分方程组近似。我们证明了在猎物个体间相互作用的特定条件下,存在唯一的全局渐近稳定平衡点。当突变很少时,群落根据马尔可夫跳跃过程在突变尺度上进化。这个过程描述了捕食者 - 猎物群落的连续平衡点,并将多态进化序列扩展到一个共同进化框架。然后我们假设突变对表型影响很小,并考虑单态猎物和捕食者种群的进化。小突变步长的极限导致一个由两个微分方程组成的系统,这是捕食者 - 猎物共同进化的适应性动力学规范方程的一个版本。我们用一个考虑了不同猎物防御机制的捕食者 - 猎物群落的例子来说明这些不同的极限。我们通过模拟观察这些不同的猎物策略如何影响群落。