Suppr超能文献

在复杂的基因型-表型网络上幸免于进化逃逸

Surviving evolutionary escape on complex genotype-phenotype networks.

作者信息

Ibáñez-Marcelo Esther, Alarcón Tomás

机构信息

Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, Bellaterra, 08193, Barcelona, Spain.

Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain.

出版信息

J Math Biol. 2016 Feb;72(3):623-47. doi: 10.1007/s00285-015-0896-x. Epub 2015 May 23.

Abstract

We study the problem of evolutionary escape and survival of cell populations with a genotype-phenotype structure. We refer to evolutionary escape as the process where a cell of a given ill-adapted population to reach a well-adapted phenotype. Similarly, survival refers to the dynamics of the population once the escape phenotype has been reached. The aim of this paper is to analyse the influence of topological properties associated to robustness and evolvability on the probability of escape and on the probability of survival. In order to explore these issues, we formulate a population dynamics model, consisting of a multi-type time-continuous branching process, where types are associated to genotypes and their birth and death probabilities depend on the associated phenotype (non-escape or escape). We exploit the separation of time scales introduced by the the difference in reproductive ratios between the ill-adapted phenotypes and the escape phenotype. Two dynamical regimes emerge: a fast-decaying regime associated to the escape process itself, and a slow regime which corresponds to the survival dynamics of the population once the escape phenotype has been reached. We exploit this separation of time scales to analyse the topological factors which determine escape and survival probabilities. We show that, while the escape probability depends on the degree of escape phenotype, the probability of survival is essentially determined by its robustness, measured in terms of a weighted clustering coefficient.

摘要

我们研究具有基因型-表型结构的细胞群体的进化逃逸和生存问题。我们将进化逃逸定义为给定适应不良群体中的细胞达到适应良好表型的过程。类似地,生存是指一旦达到逃逸表型后群体的动态变化。本文的目的是分析与鲁棒性和可进化性相关的拓扑性质对逃逸概率和生存概率的影响。为了探讨这些问题,我们构建了一个群体动力学模型,该模型由一个多类型的时间连续分支过程组成,其中类型与基因型相关,它们的生死概率取决于相关的表型(非逃逸或逃逸)。我们利用适应不良表型和逃逸表型之间繁殖率差异所引入的时间尺度分离。出现了两种动力学状态:一种与逃逸过程本身相关的快速衰减状态,以及一种对应于一旦达到逃逸表型后群体生存动态的缓慢状态。我们利用这种时间尺度分离来分析决定逃逸和生存概率的拓扑因素。我们表明,虽然逃逸概率取决于逃逸表型的程度,但生存概率本质上由其鲁棒性决定,鲁棒性通过加权聚类系数来衡量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验