Camer Danielle, Yu Yinghua, Szabo Alexander, Dinh Chi H L, Wang Hongqin, Cheng Licai, Huang Xu-Feng
Centre for Translational Neuroscience, Faculty of Science, Medicine and Health and Illawarra Health and Medical Research Institute, University of Wollongong, NSW 2522, Australia.
Centre for Translational Neuroscience, Faculty of Science, Medicine and Health and Illawarra Health and Medical Research Institute, University of Wollongong, NSW 2522, Australia; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, NSW 2234, Australia.
Mol Cell Endocrinol. 2015 Sep 5;412:36-43. doi: 10.1016/j.mce.2015.05.018. Epub 2015 May 19.
High-fat (HF) diet-induced obesity is a major risk factor for the development of insulin resistance and hepatic steatosis. We examined the hypothesis that bardoxolone methyl (BM) would prevent the development of insulin resistance and hepatic steatosis in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC), HF (40% fat), or HF diet supplemented with 10 mg/kg/day BM orally for 21 weeks. Glucose metabolism was assessed using a glucose tolerance test (GTT) and insulin sensitivity test (IST). Signalling molecules involved in insulin resistance, inflammation, and lipid metabolism were examined in liver tissue via western blotting and RT-PCR. BM prevented HF diet-induced insulin resistance and alterations in the protein levels of protein tyrosine phosphatase 1B (PTP1B), forkhead box protein O1 (FOXO1) and BDNF, and expression of the insulin receptor (IR), IRS-1 and glucose-6-phosphatase (G6Pase) genes. Furthermore, BM prevented fat accumulation in the liver and decreases in the β-oxidation gene, peroxisomal acyl-coenzyme A oxidase 1 (ACOX) in mice fed a HF diet. In the livers of HF fed mice, BM administration prevented HF diet-induced macrophage infiltration, inflammation as indicated by reduced IL-6 and signal transducer and activator of transcription 3 (STAT3) protein levels and TNFα mRNA expression, and increased nuclear factor-like 2 (Nrf2) mRNA expression and nuclear protein levels. These findings suggest that BM prevents HF diet induced insulin resistance and the development of hepatic steatosis in mice fed a chronic HF diet through modulation of molecules involved in insulin signalling, lipid metabolism and inflammation in the liver.
高脂(HF)饮食诱导的肥胖是胰岛素抵抗和肝脂肪变性发展的主要危险因素。我们检验了如下假设:巴多昔芬甲酯(BM)可预防高脂饮食喂养小鼠发生胰岛素抵抗和肝脂肪变性。将C57BL/6J雄性小鼠分为三组,分别给予实验室普通饲料(LC)、高脂(40%脂肪)饲料或高脂饲料并口服补充10 mg/kg/天的BM,持续21周。使用葡萄糖耐量试验(GTT)和胰岛素敏感性试验(IST)评估葡萄糖代谢。通过蛋白质印迹法和逆转录-聚合酶链反应(RT-PCR)检测肝组织中参与胰岛素抵抗、炎症和脂质代谢的信号分子。BM可预防高脂饮食诱导的胰岛素抵抗以及蛋白酪氨酸磷酸酶1B(PTP1B)、叉头框蛋白O1(FOXO1)和脑源性神经营养因子(BDNF)蛋白水平的改变,以及胰岛素受体(IR)、胰岛素受体底物-1(IRS-1)和葡萄糖-6-磷酸酶(G6Pase)基因的表达。此外,BM可预防高脂饮食喂养小鼠肝脏中的脂肪堆积以及β-氧化基因过氧化物酶体酰基辅酶A氧化酶1(ACOX)的减少。在高脂喂养小鼠的肝脏中,给予BM可预防高脂饮食诱导的巨噬细胞浸润、炎症(表现为白细胞介素-6和信号转导及转录激活因子3(STAT3)蛋白水平降低以及肿瘤坏死因子α(TNFα)mRNA表达减少),并增加核因子样2(Nrf2)mRNA表达和核蛋白水平。这些发现表明,BM通过调节肝脏中参与胰岛素信号传导、脂质代谢和炎症的分子,预防了慢性高脂饮食喂养小鼠的高脂饮食诱导的胰岛素抵抗和肝脂肪变性的发展。