Suppr超能文献

血清微小RNA解释单卵双胞胎和双卵双胞胎非酒精性脂肪性肝病的不一致性:一项前瞻性研究

Serum microRNAs explain discordance of non-alcoholic fatty liver disease in monozygotic and dizygotic twins: a prospective study.

作者信息

Zarrinpar Amir, Gupta Shakti, Maurya Mano R, Subramaniam Shankar, Loomba Rohit

机构信息

NAFLD Translational Research Unit, University of California, San Diego, La Jolla, California, USA Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.

Department of Bioengineering, San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, USA.

出版信息

Gut. 2016 Sep;65(9):1546-54. doi: 10.1136/gutjnl-2015-309456. Epub 2015 May 22.

Abstract

OBJECTIVE

In the setting where two individuals are genetically similar, epigenetic mechanisms could account for discordance in the presence or absence of non-alcoholic fatty liver disease (NAFLD). This study investigated if serum microRNAs (miRs) could explain discordance in NAFLD.

DESIGN

This is a cross-sectional analysis of a prospective cohort study of 40 (n=80) twin-pairs residing in Southern California. All participants underwent a standardised research visit, liver MRI using proton-density fat fraction to quantify fat content and miR profiling of their serum.

RESULTS

Among the 40 twin-pairs, there were 6 concordant for NAFLD, 28 were concordant for non-NAFLD and 6 were discordant for NAFLD. The prevalence of NAFLD was 22.5% (18/80). Within the six discordant twins, a panel of 10 miRs differentiated the twin with NAFLD from the one without. Two of these miRs, miR-331-3p and miR-30c, were also among the 21 miRs that were different between NAFLD and non-NAFLD groups (for miR-331-3p: 7.644±0.091 vs 8.057±0.071, respectively, p=0.004; for miR-30c: 10.013±0.126 vs 10.418±0.086, respectively, p=0.008). Both miRs were highly heritable (35.9% and 10.7%, respectively) and highly correlated with each other (R=0.90, p=2.2×10(-16)) suggesting involvement in a common mechanistic pathway. An interactome analysis of these two miRs showed seven common target genes.

CONCLUSIONS

Using a novel human twin-study design, we demonstrate that discordancy in liver fat content between the twins can be explained by miRs, and that they are heritable.

摘要

目的

在两个个体基因相似的情况下,表观遗传机制可能解释非酒精性脂肪性肝病(NAFLD)存在与否的不一致性。本研究调查血清微小RNA(miR)是否能解释NAFLD的不一致性。

设计

这是一项对居住在南加州的40对(n = 80)双胞胎进行的前瞻性队列研究的横断面分析。所有参与者都接受了标准化的研究访视、使用质子密度脂肪分数进行肝脏MRI以量化脂肪含量以及血清miR谱分析。

结果

在40对双胞胎中,6对NAFLD情况一致,28对非NAFLD情况一致,6对NAFLD情况不一致。NAFLD的患病率为22.5%(18/80)。在6对不一致的双胞胎中,一组10个miR能够区分患NAFLD的双胞胎和未患NAFLD的双胞胎。这10个miR中的两个,即miR - 331 - 3p和miR - 30c,也在NAFLD组和非NAFLD组之间存在差异的21个miR之中(对于miR - 331 - 3p,分别为7.644±0.091和8.057±0.071,p = 0.004;对于miR - 30c,分别为10.013±0.126和10.418±0.086,p = 0.008)。这两个miR都具有高度遗传性(分别为35.9%和10.7%),并且彼此高度相关(R = 0.90,p = 2.2×10⁻¹⁶),表明它们参与了共同的机制途径。对这两个miR的相互作用组分析显示有7个共同的靶基因。

结论

使用新颖的人类双胞胎研究设计,我们证明双胞胎之间肝脏脂肪含量的不一致性可以由miR解释,并且它们具有遗传性。

相似文献

2
Heritability of Hepatic Fibrosis and Steatosis Based on a Prospective Twin Study.
Gastroenterology. 2015 Dec;149(7):1784-93. doi: 10.1053/j.gastro.2015.08.011. Epub 2015 Aug 20.
5
Association of Circulating Serum miR-34a and miR-122 with Dyslipidemia among Patients with Non-Alcoholic Fatty Liver Disease.
PLoS One. 2016 Apr 14;11(4):e0153497. doi: 10.1371/journal.pone.0153497. eCollection 2016.
7
Identification and study of differentially expressed miRNAs in aged NAFLD rats based on high-throughput sequencing.
Ann Hepatol. 2020 May-Jun;19(3):302-312. doi: 10.1016/j.aohep.2019.12.003. Epub 2019 Dec 16.
8
Noninvasive Diagnosis of Nonalcoholic Fatty Liver Disease and Quantification of Liver Fat Using a New Quantitative Ultrasound Technique.
Clin Gastroenterol Hepatol. 2015 Jul;13(7):1337-1345.e6. doi: 10.1016/j.cgh.2014.11.027. Epub 2014 Dec 3.
9
Heritability of non-alcoholic fatty liver disease and association with abnormal vascular parameters: a twin study.
Liver Int. 2012 Sep;32(8):1287-93. doi: 10.1111/j.1478-3231.2012.02823.x. Epub 2012 Jun 1.

引用本文的文献

1
The use of circulating miRNAs for the diagnosis, prognosis, and personalized treatment of MASLD.
J Physiol Biochem. 2025 Jul 16. doi: 10.1007/s13105-025-01110-w.
3
Genetically predicted fatty liver disease and risk of psychiatric disorders: A mendelian randomization study.
World J Clin Cases. 2024 May 16;12(14):2359-2369. doi: 10.12998/wjcc.v12.i14.2359.
4
From NAFLD to NASH: Understanding the spectrum of non-alcoholic liver diseases and their consequences.
Heliyon. 2024 Apr 25;10(9):e30387. doi: 10.1016/j.heliyon.2024.e30387. eCollection 2024 May 15.
5
NAFLD Fibrosis Progression and Type 2 Diabetes: The Hepatic-Metabolic Interplay.
Life (Basel). 2024 Feb 18;14(2):272. doi: 10.3390/life14020272.
6
Lack of associations of microRNAs with severe NAFLD in people living with HIV: discovery case-control study.
Front Endocrinol (Lausanne). 2023 Sep 22;14:1230046. doi: 10.3389/fendo.2023.1230046. eCollection 2023.
7
Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH).
Sci Transl Med. 2023 Oct 4;15(716):eadi0759. doi: 10.1126/scitranslmed.adi0759.
8
Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines.
Front Neurosci. 2022 Nov 15;16:1042442. doi: 10.3389/fnins.2022.1042442. eCollection 2022.
10
Applications of massively parallel sequencing in forensic genetics.
Genet Mol Biol. 2022 Sep 19;45(3 Suppl 1):e20220077. doi: 10.1590/1678-4685-GMB-2022-0077. eCollection 2022.

本文引用的文献

1
Regulation of MET receptor tyrosine kinase signaling by suppressor of cytokine signaling 1 in hepatocellular carcinoma.
Oncogene. 2015 Nov 12;34(46):5718-28. doi: 10.1038/onc.2015.20. Epub 2015 Mar 2.
2
Biomarkers of NAFLD progression: a lipidomics approach to an epidemic.
J Lipid Res. 2015 Mar;56(3):722-736. doi: 10.1194/jlr.P056002. Epub 2015 Jan 17.
3
Circulating microRNAs in patients with non-alcoholic fatty liver disease.
World J Hepatol. 2014 Aug 27;6(8):613-20. doi: 10.4254/wjh.v6.i8.613.
4
Down-regulation of HDAC5 inhibits growth of human hepatocellular carcinoma by induction of apoptosis and cell cycle arrest.
Tumour Biol. 2014 Nov;35(11):11523-32. doi: 10.1007/s13277-014-2358-2. Epub 2014 Aug 17.
5
Controversies in the Diagnosis and Management of NAFLD and NASH.
Gastroenterol Hepatol (N Y). 2014 Apr;10(4):219-27.
7
SOCS, inflammation, and cancer.
JAKSTAT. 2013 Jul 1;2(3):e24053. doi: 10.4161/jkst.24053. Epub 2013 Aug 15.
8
Noninvasive evaluation of NAFLD.
Nat Rev Gastroenterol Hepatol. 2013 Nov;10(11):666-75. doi: 10.1038/nrgastro.2013.175. Epub 2013 Sep 24.
9
Regulation of MET receptor signaling by SOCS1 and its implications for hepatocellular carcinoma.
Curr Pharm Des. 2014;20(17):2922-33. doi: 10.2174/13816128113199990597.
10
Emerging quantitative magnetic resonance imaging biomarkers of hepatic steatosis.
Hepatology. 2013 Dec;58(6):1877-80. doi: 10.1002/hep.26543. Epub 2013 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验