Dellus-Gur Eynat, Elias Mikael, Caselli Emilia, Prati Fabio, Salverda Merijn L M, de Visser J Arjan G M, Fraser James S, Tawfik Dan S
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
J Mol Biol. 2015 Jul 17;427(14):2396-409. doi: 10.1016/j.jmb.2015.05.011. Epub 2015 May 22.
Epistasis is a key factor in evolution since it determines which combinations of mutations provide adaptive solutions and which mutational pathways toward these solutions are accessible by natural selection. There is growing evidence for the pervasiveness of sign epistasis--a complete reversion of mutational effects, particularly in protein evolution--yet its molecular basis remains poorly understood. We describe the structural basis of sign epistasis between G238S and R164S, two adaptive mutations in TEM-1 β-lactamase--an enzyme that endows antibiotics resistance. Separated by 10 Å, these mutations initiate two separate trajectories toward increased hydrolysis rates and resistance toward second and third-generation cephalosporins antibiotics. Both mutations allow the enzyme's active site to adopt alternative conformations and accommodate the new antibiotics. By solving the corresponding set of crystal structures, we found that R164S causes local disorder whereas G238S induces discrete conformations. When combined, the mutations in 238 and 164 induce local disorder whereby nonproductive conformations that perturb the enzyme's catalytic preorganization dominate. Specifically, Asn170 that coordinates the deacylating water molecule is misaligned, in both the free form and the inhibitor-bound double mutant. This local disorder is not restored by stabilizing global suppressor mutations and thus leads to an evolutionary cul-de-sac. Conformational dynamism therefore underlines the reshaping potential of protein's structures and functions but also limits protein evolvability because of the fragility of the interactions networks that maintain protein structures.
上位性是进化中的一个关键因素,因为它决定了哪些突变组合能提供适应性解决方案,以及自然选择能够通过哪些突变途径来实现这些解决方案。越来越多的证据表明,符号上位性普遍存在——突变效应的完全逆转,尤其是在蛋白质进化中——但其分子基础仍知之甚少。我们描述了TEM-1 β-内酰胺酶(一种赋予抗生素抗性的酶)中两个适应性突变G238S和R164S之间符号上位性的结构基础。这两个突变相隔10 Å,它们启动了两条独立的轨迹,朝着提高水解速率以及对第二代和第三代头孢菌素抗生素的抗性发展。这两个突变都使酶的活性位点能够采用不同的构象,并适应新的抗生素。通过解析相应的晶体结构集,我们发现R164S导致局部无序,而G238S诱导离散构象。当两者结合时,238位和164位的突变会诱导局部无序,从而使扰乱酶催化预组织的非生产性构象占主导。具体而言,在游离形式和抑制剂结合的双突变体中,协调脱酰基水分子的Asn170都发生了错位。这种局部无序不会通过稳定全局抑制突变来恢复,因此导致了进化的死胡同。因此,构象动态性既强调了蛋白质结构和功能的重塑潜力,也由于维持蛋白质结构的相互作用网络的脆弱性而限制了蛋白质的进化能力。