Suppr超能文献

肌肉干细胞信号转导的生物力学起源。

Biomechanical Origins of Muscle Stem Cell Signal Transduction.

机构信息

Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1.

Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1.

出版信息

J Mol Biol. 2016 Apr 10;428(7):1441-54. doi: 10.1016/j.jmb.2015.05.004. Epub 2015 May 21.

Abstract

Skeletal muscle, the most abundant and widespread tissue in the human body, contracts upon receiving electrochemical signals from the nervous system to support essential functions such as thermoregulation, limb movement, blinking, swallowing and breathing. Reconstruction of adult muscle tissue relies on a pool of mononucleate, resident muscle stem cells, known as "satellite cells", expressing the paired-box transcription factor Pax7 necessary for their specification during embryonic development and long-term maintenance during adult life. Satellite cells are located around the myofibres in a niche at the interface of the basal lamina and the host fibre plasma membrane (i.e., sarcolemma), at a very low frequency. Upon damage to the myofibres, quiescent satellite cells are activated and give rise to a population of transient amplifying myogenic progenitor cells, which eventually exit the cell cycle permanently and fuse to form new myofibres and regenerate the tissue. A subpopulation of satellite cells self-renew and repopulate the niche, poised to respond to future demands. Harnessing the potential of satellite cells relies on a complete understanding of the molecular mechanisms guiding their regulation in vivo. Over the past several decades, studies revealed many signal transduction pathways responsible for satellite cell fate decisions, but the niche cues driving the activation and silencing of these pathways are less clear. Here we explore the scintillating possibility that considering the dynamic changes in the biophysical properties of the skeletal muscle, namely stiffness, and the stretch and shear forces to which a myofibre can be subjected to may provide missing information necessary to gain a full understanding of satellite cell niche regulation.

摘要

骨骼肌是人体中最丰富和广泛分布的组织,它在接收到来自神经系统的电化学信号后会收缩,以支持体温调节、肢体运动、眨眼、吞咽和呼吸等基本功能。成人肌肉组织的重建依赖于一群单核、常驻的肌肉干细胞,称为“卫星细胞”,它们表达配对盒转录因子 Pax7,这对于它们在胚胎发育期间的特化和在成人生活中的长期维持是必要的。卫星细胞位于肌纤维周围的基底膜和宿主纤维质膜(即肌膜)界面的小生境中,频率非常低。当肌纤维受损时,静止的卫星细胞被激活,并产生一群短暂扩增的成肌祖细胞,这些细胞最终永久退出细胞周期并融合形成新的肌纤维,从而再生组织。卫星细胞的一个亚群自我更新并重新填充小生境,准备好应对未来的需求。利用卫星细胞的潜力依赖于对指导其体内调节的分子机制的全面理解。在过去的几十年中,研究揭示了许多负责卫星细胞命运决定的信号转导途径,但驱动这些途径激活和沉默的小生境线索尚不清楚。在这里,我们探讨了一个令人兴奋的可能性,即考虑到骨骼肌生物物理特性(即刚度)的动态变化,以及肌纤维可能承受的拉伸和剪切力,可能提供了获得对卫星细胞小生境调节的全面理解所必需的缺失信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验