Suppr超能文献

多功能丝原弹性蛋白生物材料系统

Multifunctional silk-tropoelastin biomaterial systems.

作者信息

Ghezzi Chiara E, Rnjak-Kovacina Jelena, Weiss Anthony S, Kaplan David L

机构信息

Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.

School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia ; Bosch Institute, The University of Sydney, NSW 2006, Australia ; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.

出版信息

Isr J Chem. 2013 Oct;53(9-10):777-786. doi: 10.1002/ijch.201300082.

Abstract

New multifunctional, degradable, polymeric biomaterial systems would provide versatile platforms to address cell and tissue needs in both and environments. While protein-based composites or alloys are the building blocks of biological organisms, similar systems have not been largely exploited to dates to generate biomaterials able to control and direct biological functions, by recapitulating their inherent structural and mechanical complexities. Therefore, we have recently proposed silk-tropoelastin material platforms able to conjugate a mechanically robust and durable protein, silk, to a highly flexible and biologically active protein, tropoelastin. This review focuses on the elucidation of the interactions between silk and tropoelastin in order to control material structure, properties, and ultimately functions. In addition, an approach is provided for novel material designs to provide tools to control biological outcomes via surface roughness, elasticity, and net charge for neuronal and mesenchymal stem cell-based tissue engineering.

摘要

新型多功能、可降解的聚合物生物材料系统将提供通用平台,以满足体内和体外环境下细胞和组织的需求。虽然基于蛋白质的复合材料或合金是生物有机体的组成部分,但迄今为止,类似的系统尚未被大量用于制造能够通过重现其固有的结构和机械复杂性来控制和引导生物学功能的生物材料。因此,我们最近提出了丝原弹性蛋白材料平台,该平台能够将机械强度高且耐用的蛋白质丝与高度灵活且具有生物活性的蛋白质原弹性蛋白结合起来。本综述着重阐述丝与原弹性蛋白之间的相互作用,以控制材料的结构、性能并最终实现其功能。此外,还提供了一种新颖的材料设计方法,通过表面粗糙度、弹性和净电荷,为基于神经元和间充质干细胞的组织工程提供控制生物学结果的工具。

相似文献

1
Multifunctional silk-tropoelastin biomaterial systems.
Isr J Chem. 2013 Oct;53(9-10):777-786. doi: 10.1002/ijch.201300082.
2
Charge-Tunable Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses.
Adv Funct Mater. 2013 Aug 19;23(31):3875-3884. doi: 10.1002/adfm.201202685.
3
Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response.
J Tissue Eng Regen Med. 2017 Sep;11(9):2549-2564. doi: 10.1002/term.2152. Epub 2016 Apr 6.
4
The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials.
Biomaterials. 2011 Dec;32(34):8979-89. doi: 10.1016/j.biomaterials.2011.08.037. Epub 2011 Aug 26.
5
Silk-tropoelastin protein films for nerve guidance.
Acta Biomater. 2015 Mar;14:1-10. doi: 10.1016/j.actbio.2014.11.045. Epub 2014 Dec 4.
6
Electrodeposited gels prepared from protein alloys.
Nanomedicine (Lond). 2015;10(5):803-14. doi: 10.2217/nnm.14.230.
7
Engineered tropoelastin and elastin-based biomaterials.
Adv Protein Chem Struct Biol. 2009;78:1-24. doi: 10.1016/S1876-1623(08)78001-5. Epub 2009 Nov 27.
8
Silk as a Biomaterial to Support Long-Term Three-Dimensional Tissue Cultures.
ACS Appl Mater Interfaces. 2016 Aug 31;8(34):21861-8. doi: 10.1021/acsami.5b12114. Epub 2016 Feb 5.
9
Bioactive silk protein biomaterial systems for optical devices.
Biomacromolecules. 2008 Apr;9(4):1214-20. doi: 10.1021/bm701235f. Epub 2008 Mar 28.
10
Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering.
Biomed Mater. 2015 Mar 31;10(3):034105. doi: 10.1088/1748-6041/10/3/034105.

引用本文的文献

1
Elastic proteins and elastomeric protein alloys.
Curr Opin Biotechnol. 2016 Jun;39:56-60. doi: 10.1016/j.copbio.2015.12.020. Epub 2016 Jan 15.
2
Electrodeposited gels prepared from protein alloys.
Nanomedicine (Lond). 2015;10(5):803-14. doi: 10.2217/nnm.14.230.
3
Fabricated Elastin.
Adv Healthc Mater. 2015 Nov 18;4(16):2530-2556. doi: 10.1002/adhm.201400781. Epub 2015 Mar 13.
4
Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine.
Ann Biomed Eng. 2015 Mar;43(3):657-80. doi: 10.1007/s10439-014-1206-2. Epub 2014 Dec 24.

本文引用的文献

1
Charge-Tunable Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses.
Adv Funct Mater. 2013 Aug 19;23(31):3875-3884. doi: 10.1002/adfm.201202685.
2
Tropoelastin--a multifaceted naturally smart material.
Adv Drug Deliv Rev. 2013 Apr;65(4):421-8. doi: 10.1016/j.addr.2012.06.009. Epub 2012 Jul 8.
3
Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering.
Acta Biomater. 2012 Oct;8(10):3714-22. doi: 10.1016/j.actbio.2012.06.032. Epub 2012 Jun 28.
4
Silk fibroin derived polypeptide-induced biomineralization of collagen.
Biomaterials. 2012 Jan;33(1):102-8. doi: 10.1016/j.biomaterials.2011.09.039. Epub 2011 Oct 6.
5
Materials fabrication from Bombyx mori silk fibroin.
Nat Protoc. 2011 Sep 22;6(10):1612-31. doi: 10.1038/nprot.2011.379.
6
The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials.
Biomaterials. 2011 Dec;32(34):8979-89. doi: 10.1016/j.biomaterials.2011.08.037. Epub 2011 Aug 26.
7
Mesenchymal stem cell-seeded multilayered dense collagen-silk fibroin hybrid for tissue engineering applications.
Biotechnol J. 2011 Oct;6(10):1198-207. doi: 10.1002/biot.201100127. Epub 2011 Aug 26.
8
Regulation of silk material structure by temperature-controlled water vapor annealing.
Biomacromolecules. 2011 May 9;12(5):1686-96. doi: 10.1021/bm200062a. Epub 2011 Mar 22.
9
Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity.
Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4322-7. doi: 10.1073/pnas.1014280108. Epub 2011 Feb 28.
10
Coacervation of tropoelastin.
Adv Colloid Interface Sci. 2011 Sep 14;167(1-2):94-103. doi: 10.1016/j.cis.2010.10.003. Epub 2010 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验