Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4322-7. doi: 10.1073/pnas.1014280108. Epub 2011 Feb 28.
Elastin enables the reversible deformation of elastic tissues and can withstand decades of repetitive forces. Tropoelastin is the soluble precursor to elastin, the main elastic protein found in mammals. Little is known of the shape and mechanism of assembly of tropoelastin as its unique composition and propensity to self-associate has hampered structural studies. In this study, we solve the nanostructure of full-length and corresponding overlapping fragments of tropoelastin using small angle X-ray and neutron scattering, allowing us to identify discrete regions of the molecule. Tropoelastin is an asymmetric coil, with a protruding foot that encompasses the C-terminal cell interaction motif. We show that individual tropoelastin molecules are highly extensible yet elastic without hysteresis to perform as highly efficient molecular nanosprings. Our findings shed light on how biology uses this single protein to build durable elastic structures that allow for cell attachment to an appended foot. We present a unique model for head-to-tail assembly which allows for the propagation of the molecule's asymmetric coil through a stacked spring design.
弹性蛋白使弹性组织能够进行可逆变形,并能承受数十年的重复作用力。原弹性蛋白是弹性蛋白的可溶性前体,是哺乳动物中主要的弹性蛋白。由于其独特的组成和易于自组装的特性,阻碍了结构研究,因此人们对原弹性蛋白的形状和组装机制知之甚少。在这项研究中,我们使用小角度 X 射线和中子散射技术解决了全长原弹性蛋白及其相应重叠片段的纳米结构问题,从而能够识别分子的离散区域。原弹性蛋白是一种不对称的螺旋,其突出的部分包含 C 端细胞相互作用基序。我们表明,单个原弹性蛋白分子具有很高的可拉伸性,而且没有滞后弹性,可作为高效的分子纳米弹簧。我们的研究结果揭示了生物学如何利用这种单一的蛋白质来构建耐用的弹性结构,使细胞能够附着在延伸的脚上。我们提出了一种独特的从头至尾组装模型,允许分子的不对称螺旋通过堆叠的弹簧设计进行传播。