Suppr超能文献

丝氨酸对α型肽阳离子自由基的碰撞诱导解离和光解离的影响。

Serine effects on collision-induced dissociation and photodissociation of peptide cation radicals of the -type.

作者信息

Nguyen Huong T H, Shaffer Christopher J, Ledvina Aaron R, Coon Joshua J, Tureček František

机构信息

Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, WA, 98195-1700.

Department of Chemistry, University of Wisconsin, Madison, WI, USA.

出版信息

Int J Mass Spectrom. 2015 Feb 15;378:20-30. doi: 10.1016/j.ijms.2014.06.028.

Abstract

The serine residue displays specific effects on the dissociations of peptide fragment cation-radicals of the type which are produced by electron transfer dissociation. Energy-resolved collision-induced dissociation (ER-CID), time-resolved infrared multiphoton dissociation (TR-IRMPD), and single-photon UV photodissociation at 355 nm revealed several competitive dissociation pathways consisting of loss of OH radical, water, and backbone cleavages occurring at -terminal and -terminal positions relative to the serine residue. The activation modes using slow-heating and UV photon absorption resulted in different relative intensities of fragment ions. This indicated that the dissociations proceeded through several channels with different energy-dependent kinetics. The experimental data were interpreted with the help of electron structure calculations that provided fully optimized structures and relative energies for and amide isomers of the ions as well as isomerization, dissociation, and transition state energies. UV photon absorption by the ions was due to C-radical amide groups created by ETD that provided a new chromophore absorbing at 355 nm.

摘要

丝氨酸残基对通过电子转移解离产生的此类肽片段阳离子自由基的解离具有特定影响。能量分辨碰撞诱导解离(ER-CID)、时间分辨红外多光子解离(TR-IRMPD)以及355 nm处的单光子紫外光解离揭示了几种竞争性解离途径,包括相对于丝氨酸残基在α-末端和β-末端位置发生的OH自由基损失、水损失以及主链断裂。使用缓慢加热和紫外光子吸收的活化模式导致碎片离子具有不同的相对强度。这表明解离通过具有不同能量依赖动力学的多个通道进行。借助电子结构计算对实验数据进行了解释,该计算提供了离子的α-和β-酰胺异构体的完全优化结构和相对能量,以及异构化、解离和过渡态能量。离子对紫外光子的吸收归因于电子转移解离产生的C-自由基酰胺基团,该基团提供了一个在355 nm处吸收的新发色团。

相似文献

1
Serine effects on collision-induced dissociation and photodissociation of peptide cation radicals of the -type.
Int J Mass Spectrom. 2015 Feb 15;378:20-30. doi: 10.1016/j.ijms.2014.06.028.
2
Competitive Hydrogen Atom Migrations Accompanying Cascade Dissociations of Peptide Cation-Radicals of the Type.
Int J Mass Spectrom. 2015 Feb 1;377:44-53. doi: 10.1016/j.ijms.2014.02.015.
5
Near-UV Photodissociation of Tryptic Peptide Cation Radicals. Scope and Effects of Amino Acid Residues and Radical Sites.
J Am Soc Mass Spectrom. 2017 Jul;28(7):1333-1344. doi: 10.1007/s13361-016-1586-7. Epub 2017 Feb 2.
6
7
Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals.
J Am Soc Mass Spectrom. 2016 Sep;27(9):1454-67. doi: 10.1007/s13361-016-1425-x. Epub 2016 Jun 8.
10
Combining Near-UV Photodissociation with Electron Transfer. Reduction of the Diazirine Ring in a Photomethionine-Labeled Peptide Ion.
J Am Soc Mass Spectrom. 2015 Aug;26(8):1367-81. doi: 10.1007/s13361-015-1139-5. Epub 2015 Apr 23.

引用本文的文献

1
Photolysis of the peptide bond at 193 and 222 nm.
J Chem Phys. 2025 Apr 28;162(16). doi: 10.1063/5.0257551.
2
UV-Vis Photodissociation Action Spectroscopy on Thermo LTQ-XL ETD and Bruker amaZon Ion Trap Mass Spectrometers: a Practical Guide.
J Am Soc Mass Spectrom. 2019 Sep;30(9):1558-1564. doi: 10.1007/s13361-019-02229-z. Epub 2019 May 13.
5
The Role of Electron Transfer Dissociation in Modern Proteomics.
Anal Chem. 2018 Jan 2;90(1):40-64. doi: 10.1021/acs.analchem.7b04810. Epub 2017 Dec 12.
6
Near-UV Photodissociation of Tryptic Peptide Cation Radicals. Scope and Effects of Amino Acid Residues and Radical Sites.
J Am Soc Mass Spectrom. 2017 Jul;28(7):1333-1344. doi: 10.1007/s13361-016-1586-7. Epub 2017 Feb 2.
7
Combining Near-UV Photodissociation with Electron Transfer. Reduction of the Diazirine Ring in a Photomethionine-Labeled Peptide Ion.
J Am Soc Mass Spectrom. 2015 Aug;26(8):1367-81. doi: 10.1007/s13361-015-1139-5. Epub 2015 Apr 23.
8
Electron transfer reduction of the diazirine ring in gas-phase peptide ions. On the peculiar loss of [NH4O] from photoleucine.
J Am Soc Mass Spectrom. 2015 Mar;26(3):415-31. doi: 10.1007/s13361-014-1047-0. Epub 2014 Dec 17.

本文引用的文献

1
Competitive Hydrogen Atom Migrations Accompanying Cascade Dissociations of Peptide Cation-Radicals of the Type.
Int J Mass Spectrom. 2015 Feb 1;377:44-53. doi: 10.1016/j.ijms.2014.02.015.
3
Amino acid sequence prerequisites for the formation of cn ions.
J Am Soc Mass Spectrom. 1993 Nov;4(11):874-31. doi: 10.1016/1044-0305(93)87005-W.
4
Peptide radicals and cation radicals in the gas phase.
Chem Rev. 2013 Aug 14;113(8):6691-733. doi: 10.1021/cr400043s. Epub 2013 May 7.
5
6
Cascade dissociations of peptide cation-radicals. Part 1. Scope and effects of amino acid residues in penta-, nona-, and decapeptides.
J Am Soc Mass Spectrom. 2012 Aug;23(8):1336-50. doi: 10.1007/s13361-012-0408-9. Epub 2012 Jun 6.
7
Implementing photodissociation in an Orbitrap mass spectrometer.
J Am Soc Mass Spectrom. 2011 Jun;22(6):1105-8. doi: 10.1007/s13361-011-0119-7. Epub 2011 Apr 9.
8
Electron-capture induced dissociation of doubly charged dipeptides: on the neutral losses and N-Cα bond cleavages.
Phys Chem Chem Phys. 2011 Nov 7;13(41):18373-8. doi: 10.1039/c1cp21549c. Epub 2011 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验