Suppr超能文献

使用人工神经网络(ANN)对影响室内空气质量(IAQ)的来源进行分类。

Classifying Sources Influencing Indoor Air Quality (IAQ) Using Artificial Neural Network (ANN).

作者信息

Saad Shaharil Mad, Andrew Allan Melvin, Shakaff Ali Yeon Md, Saad Abdul Rahman Mohd, Kamarudin Azman Muhamad Yusof, Zakaria Ammar

机构信息

Center of Excellence for Advanced Sensor Technology (CEASTech), Universiti Malaysia Perlis (UniMAP), Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia.

Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), Kampus UniCITI Alam, 02100 Sungai Chuchuh, Padang Besar, Perlis, Malaysia.

出版信息

Sensors (Basel). 2015 May 20;15(5):11665-84. doi: 10.3390/s150511665.

Abstract

Monitoring indoor air quality (IAQ) is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN--a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC), base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room's conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity.

摘要

如今,监测室内空气质量(IAQ)被认为很重要。一个复杂的能够对影响室内空气质量的来源进行分类的室内空气质量监测系统,肯定会对用户非常有帮助。因此,在本文中,提出了一种具有新添加功能的室内空气质量监测系统,该功能使系统能够识别影响室内空气质量水平的来源。为了实现这一点,所收集的数据已使用人工神经网络(ANN)进行训练——这是一种经过验证的模式识别方法。基本上,所提出的系统由传感器模块云(SMC)、基站和面向服务的客户端组成。传感器模块云包含多个传感器模块,这些模块测量空气质量数据并通过无线网络将捕获的数据传输到基站。室内空气质量监测系统还配备了室内空气质量指数和热舒适指数,这些指数可以向用户告知房间的状况。结果表明,该系统能够测量空气质量水平,并成功地对各种环境(如室外空气、化学物质存在、香料存在、食品和饮料以及人类活动)中影响室内空气质量的来源进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62b5/4481943/b12574b974f9/sensors-15-11665-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验