Suppr超能文献

将统计机器学习集成到语义传感器网络中以进行主动监测与控制。

Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control.

作者信息

Adeleke Jude Adekunle, Moodley Deshendran, Rens Gavin, Adewumi Aderemi Oluyinka

机构信息

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Westville Campus, University Road, Durban 3629, South Africa.

CSIR Meraka Centre for Artificial Intelligence Research (CAIR), Meiring Naude Road, Brummeria, Pretoria 0001, South Africa.

出版信息

Sensors (Basel). 2017 Apr 9;17(4):807. doi: 10.3390/s17040807.

Abstract

Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

摘要

在各种应用场景中,对我们的自然环境和人造环境进行主动监测和控制非常重要。语义传感器网络技术已得到充分研究,并用于环境监测应用,以公开传感器数据进行分析,以便在感兴趣的情况下提供响应行动。虽然这些应用能对情况做出快速响应,但为了尽量减少其不良影响,仍需要开展研究工作,以提供能够预测未来以支持主动控制的技术,从而完全避免不良情况的发生。本研究在语义传感器网络中使用流推理集成了基于统计机器学习的预测模型。该方法在室内空气质量监测案例研究中进行了评估。一种采用多层感知器模型预测短期PM 2.5污染情况的滑动窗口方法被集成到主动监测和控制框架中。结果表明,所提出的方法能够有效地预测短期PM 2.5污染情况:在半小时的预测范围内,精度高达0.86,灵敏度高达0.85,这使得系统能够在语义传感器网络的背景下警告居住者,甚至自主避免预测的污染情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0d1/5422168/b60bb3c0f6b7/sensors-17-00807-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验