Suppr超能文献

利用深度学习和传感器数据进行室内空气质量分析。

Indoor Air Quality Analysis Using Deep Learning with Sensor Data.

作者信息

Ahn Jaehyun, Shin Dongil, Kim Kyuho, Yang Jihoon

机构信息

Data Labs, Buzzni, Seoul 08788, Korea.

Department of Computer Science and Engineering, Sogang University, Seoul 04107, Korea.

出版信息

Sensors (Basel). 2017 Oct 28;17(11):2476. doi: 10.3390/s17112476.

Abstract

Indoor air quality analysis is of interest to understand the abnormal atmospheric phenomena and external factors that affect air quality. By recording and analyzing quality measurements, we are able to observe patterns in the measurements and predict the air quality of near future. We designed a microchip made out of sensors that is capable of periodically recording measurements, and proposed a model that estimates atmospheric changes using deep learning. In addition, we developed an efficient algorithm to determine the optimal observation period for accurate air quality prediction. Experimental results with real-world data demonstrate the feasibility of our approach.

摘要

室内空气质量分析对于理解影响空气质量的异常大气现象和外部因素具有重要意义。通过记录和分析质量测量数据,我们能够观察测量数据中的模式,并预测近期的空气质量。我们设计了一种由传感器组成的微芯片,该微芯片能够定期记录测量数据,并提出了一种使用深度学习估计大气变化的模型。此外,我们还开发了一种高效算法,以确定准确空气质量预测的最佳观测期。实际数据的实验结果证明了我们方法的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddc9/5712838/db2eada1ab86/sensors-17-02476-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验