Kang Wonseok, Yu Soohwan, Ko Seungyong, Paik Joonki
Department of Image, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea.
Sensors (Basel). 2015 May 22;15(5):12053-79. doi: 10.3390/s150512053.
In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures.
在各种无人机(UAV)成像应用中,多传感器超分辨率(SR)技术已成为一个长期存在的问题,并引起了越来越多的关注。多传感器SR算法利用多光谱低分辨率(LR)图像生成更高分辨率(HR)的图像,以提高无人机成像系统的性能。本文的主要目标是在现有的多光谱成像框架基础上开发一种多传感器SR方法,而不是使用额外的传感器。为了在不放大噪声或产生不自然后处理伪影的情况下恢复图像细节,本文通过结合方向自适应约束和多尺度非局部均值(NLM)滤波器,提出了一种改进的正则化SR算法。结果,所提出的方法可以通过使用强度-色调-饱和度(IHS)图像融合从一组多光谱LR图像中估计彩色HR图像,从而克服多光谱传感器的物理限制。实验结果表明,从客观测量的角度来看,所提出的方法比现有的最先进SR方法提供了更好的SR结果。