Jia Yuanyuan, Gholipour Ali, He Zhongshi, Warfield Simon K
IEEE Trans Med Imaging. 2017 May;36(5):1182-1193. doi: 10.1109/TMI.2017.2656907. Epub 2017 Jan 23.
In magnetic resonance (MR), hardware limitations, scan time constraints, and patient movement often result in the acquisition of anisotropic 3-D MR images with limited spatial resolution in the out-of-plane views. Our goal is to construct an isotropic high-resolution (HR) 3-D MR image through upsampling and fusion of orthogonal anisotropic input scans. We propose a multiframe super-resolution (SR) reconstruction technique based on sparse representation of MR images. Our proposed algorithm exploits the correspondence between the HR slices and the low-resolution (LR) sections of the orthogonal input scans as well as the self-similarity of each input scan to train pairs of overcomplete dictionaries that are used in a sparse-land local model to upsample the input scans. The upsampled images are then combined using wavelet fusion and error backprojection to reconstruct an image. Features are learned from the data and no extra training set is needed. Qualitative and quantitative analyses were conducted to evaluate the proposed algorithm using simulated and clinical MR scans. Experimental results show that the proposed algorithm achieves promising results in terms of peak signal-to-noise ratio, structural similarity image index, intensity profiles, and visualization of small structures obscured in the LR imaging process due to partial volume effects. Our novel SR algorithm outperforms the nonlocal means (NLM) method using self-similarity, NLM method using self-similarity and image prior, self-training dictionary learning-based SR method, averaging of upsampled scans, and the wavelet fusion method. Our SR algorithm can reduce through-plane partial volume artifact by combining multiple orthogonal MR scans, and thus can potentially improve medical image analysis, research, and clinical diagnosis.
在磁共振(MR)成像中,硬件限制、扫描时间约束以及患者移动常常导致获取到的三维MR图像在面外视图中的空间分辨率有限且各向异性。我们的目标是通过对正交各向异性输入扫描进行上采样和融合来构建各向同性高分辨率(HR)三维MR图像。我们提出了一种基于MR图像稀疏表示的多帧超分辨率(SR)重建技术。我们提出的算法利用HR切片与正交输入扫描的低分辨率(LR)部分之间的对应关系以及每个输入扫描的自相似性,来训练用于稀疏域局部模型的超完备字典对,以对输入扫描进行上采样。然后,使用小波融合和误差反向投影对采样后的图像进行组合以重建图像。特征是从数据中学习得到的,无需额外的训练集。使用模拟和临床MR扫描进行了定性和定量分析,以评估所提出的算法。实验结果表明,所提出的算法在峰值信噪比、结构相似性图像指数、强度分布以及因部分容积效应在LR成像过程中模糊的小结构可视化方面取得了有前景的结果。我们新颖的SR算法优于使用自相似性的非局部均值(NLM)方法、使用自相似性和图像先验的NLM方法、基于自训练字典学习的SR方法、上采样扫描的平均方法以及小波融合方法。我们的SR算法可以通过组合多个正交MR扫描来减少层面内部分容积伪影,从而有可能改善医学图像分析、研究和临床诊断。