Suppr超能文献

一种用于从正交各向异性分辨率扫描重建各向同性高空间分辨率磁共振体数据的新稀疏表示框架。

A New Sparse Representation Framework for Reconstruction of an Isotropic High Spatial Resolution MR Volume From Orthogonal Anisotropic Resolution Scans.

作者信息

Jia Yuanyuan, Gholipour Ali, He Zhongshi, Warfield Simon K

出版信息

IEEE Trans Med Imaging. 2017 May;36(5):1182-1193. doi: 10.1109/TMI.2017.2656907. Epub 2017 Jan 23.

Abstract

In magnetic resonance (MR), hardware limitations, scan time constraints, and patient movement often result in the acquisition of anisotropic 3-D MR images with limited spatial resolution in the out-of-plane views. Our goal is to construct an isotropic high-resolution (HR) 3-D MR image through upsampling and fusion of orthogonal anisotropic input scans. We propose a multiframe super-resolution (SR) reconstruction technique based on sparse representation of MR images. Our proposed algorithm exploits the correspondence between the HR slices and the low-resolution (LR) sections of the orthogonal input scans as well as the self-similarity of each input scan to train pairs of overcomplete dictionaries that are used in a sparse-land local model to upsample the input scans. The upsampled images are then combined using wavelet fusion and error backprojection to reconstruct an image. Features are learned from the data and no extra training set is needed. Qualitative and quantitative analyses were conducted to evaluate the proposed algorithm using simulated and clinical MR scans. Experimental results show that the proposed algorithm achieves promising results in terms of peak signal-to-noise ratio, structural similarity image index, intensity profiles, and visualization of small structures obscured in the LR imaging process due to partial volume effects. Our novel SR algorithm outperforms the nonlocal means (NLM) method using self-similarity, NLM method using self-similarity and image prior, self-training dictionary learning-based SR method, averaging of upsampled scans, and the wavelet fusion method. Our SR algorithm can reduce through-plane partial volume artifact by combining multiple orthogonal MR scans, and thus can potentially improve medical image analysis, research, and clinical diagnosis.

摘要

在磁共振(MR)成像中,硬件限制、扫描时间约束以及患者移动常常导致获取到的三维MR图像在面外视图中的空间分辨率有限且各向异性。我们的目标是通过对正交各向异性输入扫描进行上采样和融合来构建各向同性高分辨率(HR)三维MR图像。我们提出了一种基于MR图像稀疏表示的多帧超分辨率(SR)重建技术。我们提出的算法利用HR切片与正交输入扫描的低分辨率(LR)部分之间的对应关系以及每个输入扫描的自相似性,来训练用于稀疏域局部模型的超完备字典对,以对输入扫描进行上采样。然后,使用小波融合和误差反向投影对采样后的图像进行组合以重建图像。特征是从数据中学习得到的,无需额外的训练集。使用模拟和临床MR扫描进行了定性和定量分析,以评估所提出的算法。实验结果表明,所提出的算法在峰值信噪比、结构相似性图像指数、强度分布以及因部分容积效应在LR成像过程中模糊的小结构可视化方面取得了有前景的结果。我们新颖的SR算法优于使用自相似性的非局部均值(NLM)方法、使用自相似性和图像先验的NLM方法、基于自训练字典学习的SR方法、上采样扫描的平均方法以及小波融合方法。我们的SR算法可以通过组合多个正交MR扫描来减少层面内部分容积伪影,从而有可能改善医学图像分析、研究和临床诊断。

相似文献

2
Single Anisotropic 3-D MR Image Upsampling via Overcomplete Dictionary Trained From In-Plane High Resolution Slices.
IEEE J Biomed Health Inform. 2016 Nov;20(6):1552-1561. doi: 10.1109/JBHI.2015.2470682. Epub 2015 Aug 20.
4
MR image super-resolution reconstruction using sparse representation, nonlocal similarity and sparse derivative prior.
Comput Biol Med. 2015 Mar;58:130-45. doi: 10.1016/j.compbiomed.2014.12.023. Epub 2015 Jan 7.
7
Isotropic Reconstruction of MR Images Using 3D Patch-Based Self-Similarity Learning.
IEEE Trans Med Imaging. 2018 Aug;37(8):1932-1942. doi: 10.1109/TMI.2018.2807451. Epub 2018 Feb 19.
8
Super Resolution of Magnetic Resonance Images.
J Imaging. 2021 Jun 21;7(6):101. doi: 10.3390/jimaging7060101.
9
Super-Resolution of Cardiac MR Cine Imaging using Conditional GANs and Unsupervised Transfer Learning.
Med Image Anal. 2021 Jul;71:102037. doi: 10.1016/j.media.2021.102037. Epub 2021 Apr 6.
10
Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation.
Sci Rep. 2018 Jun 11;8(1):8799. doi: 10.1038/s41598-018-27261-z.

引用本文的文献

1
A super-resolution algorithm to fuse orthogonal CT volumes using OrthoFusion.
Sci Rep. 2025 Jan 9;15(1):1382. doi: 10.1038/s41598-025-85516-y.
2
Isotropic Brain MRI Reconstruction from Orthogonal Scans Using 3D Convolutional Neural Network.
Sensors (Basel). 2024 Oct 15;24(20):6639. doi: 10.3390/s24206639.
3
Cross-Modality Reference and Feature Mutual-Projection for 3D Brain MRI Image Super-Resolution.
J Imaging Inform Med. 2024 Dec;37(6):2838-2851. doi: 10.1007/s10278-024-01139-1. Epub 2024 Jun 3.
4
OrthoFusion: A Super-Resolution Algorithm to Fuse Orthogonal CT Volumes.
Res Sq. 2024 Apr 3:rs.3.rs-4117386. doi: 10.21203/rs.3.rs-4117386/v1.
5
Gradient-Guided Isotropic MRI Reconstruction from Anisotropic Acquisitions.
IEEE Trans Comput Imaging. 2021;7:1240-1253. doi: 10.1109/tci.2021.3128745. Epub 2021 Nov 17.
6
Scan-Specific Generative Neural Network for MRI Super-Resolution Reconstruction.
IEEE Trans Med Imaging. 2022 Jun;41(6):1383-1399. doi: 10.1109/TMI.2022.3142610. Epub 2022 Jun 1.
7
Assessing the utility of low resolution brain imaging: treatment of infant hydrocephalus.
Neuroimage Clin. 2021;32:102896. doi: 10.1016/j.nicl.2021.102896. Epub 2021 Nov 23.
8
Deep learning-Based 3D inpainting of brain MR images.
Sci Rep. 2021 Jan 18;11(1):1673. doi: 10.1038/s41598-020-80930-w.

本文引用的文献

2
A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging.
Neuroimage. 2016 Jan 15;125:386-400. doi: 10.1016/j.neuroimage.2015.10.061. Epub 2015 Oct 23.
3
Single Anisotropic 3-D MR Image Upsampling via Overcomplete Dictionary Trained From In-Plane High Resolution Slices.
IEEE J Biomed Health Inform. 2016 Nov;20(6):1552-1561. doi: 10.1109/JBHI.2015.2470682. Epub 2015 Aug 20.
4
Accelerated High Spatial Resolution Diffusion-Weighted Imaging.
Inf Process Med Imaging. 2015;24:69-81. doi: 10.1007/978-3-319-19992-4_6.
5
Fast Volume Reconstruction From Motion Corrupted Stacks of 2D Slices.
IEEE Trans Med Imaging. 2015 Sep;34(9):1901-13. doi: 10.1109/TMI.2015.2415453. Epub 2015 Mar 20.
6
MRI upsampling using feature-based nonlocal means approach.
IEEE Trans Med Imaging. 2014 Oct;33(10):1969-85. doi: 10.1109/TMI.2014.2329271. Epub 2014 Jun 12.
7
Isotropic reconstruction of a 4-D MRI thoracic sequence using super-resolution.
Magn Reson Med. 2015 Feb;73(2):784-93. doi: 10.1002/mrm.25157. Epub 2014 Jan 29.
8
Improved vocal tract reconstruction and modeling using an image super-resolution technique.
J Acoust Soc Am. 2013 Jun;133(6):EL439-45. doi: 10.1121/1.4802903.
9
Single-image super-resolution of brain MR images using overcomplete dictionaries.
Med Image Anal. 2013 Jan;17(1):113-32. doi: 10.1016/j.media.2012.09.003. Epub 2012 Oct 5.
10
Reconstruction of high-resolution tongue volumes from MRI.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3511-24. doi: 10.1109/TBME.2012.2218246. Epub 2012 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验