Suppr超能文献

一种基于加权规则的方法,通过结节特征预测肺结节的恶性程度。

A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics.

作者信息

Kaya Aydın, Can Ahmet Burak

机构信息

Hacettepe University, Computer Engineering Department, 06800 Ankara, Turkey.

出版信息

J Biomed Inform. 2015 Aug;56:69-79. doi: 10.1016/j.jbi.2015.05.011. Epub 2015 May 22.

Abstract

Predicting malignancy of solitary pulmonary nodules from computer tomography scans is a difficult and important problem in the diagnosis of lung cancer. This paper investigates the contribution of nodule characteristics in the prediction of malignancy. Using data from Lung Image Database Consortium (LIDC) database, we propose a weighted rule based classification approach for predicting malignancy of pulmonary nodules. LIDC database contains CT scans of nodules and information about nodule characteristics evaluated by multiple annotators. In the first step of our method, votes for nodule characteristics are obtained from ensemble classifiers by using image features. In the second step, votes and rules obtained from radiologist evaluations are used by a weighted rule based method to predict malignancy. The rule based method is constructed by using radiologist evaluations on previous cases. Correlations between malignancy and other nodule characteristics and agreement ratio of radiologists are considered in rule evaluation. To handle the unbalanced nature of LIDC, ensemble classifiers and data balancing methods are used. The proposed approach is compared with the classification methods trained on image features. Classification accuracy, specificity and sensitivity of classifiers are measured. The experimental results show that using nodule characteristics for malignancy prediction can improve classification results.

摘要

通过计算机断层扫描预测孤立性肺结节的恶性程度是肺癌诊断中一个困难而重要的问题。本文研究了结节特征在恶性程度预测中的作用。利用来自肺部影像数据库联盟(LIDC)数据库的数据,我们提出了一种基于加权规则的分类方法来预测肺结节的恶性程度。LIDC数据库包含结节的CT扫描以及由多个标注员评估的结节特征信息。在我们方法的第一步中,通过使用图像特征从集成分类器获得对结节特征的投票。在第二步中,基于加权规则的方法使用从放射科医生评估中获得的投票和规则来预测恶性程度。基于规则的方法是通过使用放射科医生对先前病例的评估构建的。在规则评估中考虑了恶性程度与其他结节特征之间的相关性以及放射科医生的一致率。为了处理LIDC的不平衡性质,使用了集成分类器和数据平衡方法。将所提出的方法与基于图像特征训练的分类方法进行比较。测量分类器的分类准确率、特异性和敏感性。实验结果表明,使用结节特征进行恶性程度预测可以改善分类结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验