Suppr超能文献

亚组中治疗效果的估计:一种经验贝叶斯方法。

Estimation of treatment effect in a subpopulation: An empirical Bayes approach.

作者信息

Shen Changyu, Li Xiaochun, Jeong Jaesik

机构信息

a Department of Biostatistics , School of Medicine, Fairbanks School of Public Health, Indiana University , Indianapolis , Indiana , USA.

b Department of Statistics , Chonnam National University , Gwangju , Korea.

出版信息

J Biopharm Stat. 2016;26(3):507-18. doi: 10.1080/10543406.2015.1052480. Epub 2015 May 26.

Abstract

It is well recognized that the benefit of a medical intervention may not be distributed evenly in the target population due to patient heterogeneity, and conclusions based on conventional randomized clinical trials may not apply to every person. Given the increasing cost of randomized trials and difficulties in recruiting patients, there is a strong need to develop analytical approaches to estimate treatment effect in subpopulations. In particular, due to limited sample size for subpopulations and the need for multiple comparisons, standard analysis tends to yield wide confidence intervals of the treatment effect that are often noninformative. We propose an empirical Bayes approach to combine both information embedded in a target subpopulation and information from other subjects to construct confidence intervals of the treatment effect. The method is appealing in its simplicity and tangibility in characterizing the uncertainty about the true treatment effect. Simulation studies and a real data analysis are presented.

摘要

众所周知,由于患者的异质性,医学干预的益处可能不会在目标人群中均匀分布,基于传统随机临床试验得出的结论可能并不适用于每个人。鉴于随机试验成本不断增加以及招募患者存在困难,迫切需要开发分析方法来估计亚组人群中的治疗效果。特别是,由于亚组人群的样本量有限以及需要进行多重比较,标准分析往往会得出治疗效果的宽泛置信区间,这些区间通常没有实际意义。我们提出一种经验贝叶斯方法,将目标亚组中蕴含的信息与其他受试者的信息相结合,以构建治疗效果的置信区间。该方法在表征真实治疗效果的不确定性方面具有简单性和直观性,颇具吸引力。本文展示了模拟研究和实际数据分析。

相似文献

1
Estimation of treatment effect in a subpopulation: An empirical Bayes approach.
J Biopharm Stat. 2016;26(3):507-18. doi: 10.1080/10543406.2015.1052480. Epub 2015 May 26.
2
Interval estimation of a population mean using existing knowledge or data on effect sizes.
Stat Methods Med Res. 2019 Jun;28(6):1703-1715. doi: 10.1177/0962280218773537. Epub 2018 May 8.
3
Adjusting for selection bias in assessing treatment effect estimates from multiple subgroups.
Biom J. 2019 Jan;61(1):216-229. doi: 10.1002/bimj.201800097. Epub 2018 Nov 25.
4
Quasi-empirical Bayes methodology for improving meta-analysis.
J Biopharm Stat. 2006;16(1):77-90. doi: 10.1080/10543400500406553.
5
Sharp simultaneous confidence intervals for the means of selected populations with application to microarray data analysis.
Biometrics. 2007 Sep;63(3):767-76. doi: 10.1111/j.1541-0420.2007.00770.x. Epub 2007 Apr 2.
6
Using empirical Bayes methods in biopharmaceutical research.
Stat Med. 1991 Jun;10(6):811-27; discussion 828-9. doi: 10.1002/sim.4780100604.
7
Identification of subpopulations with distinct treatment benefit rate using the Bayesian tree.
Biom J. 2016 Nov;58(6):1357-1375. doi: 10.1002/bimj.201500180. Epub 2016 Jun 29.
9
Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis.
Res Synth Methods. 2019 Mar;10(1):23-43. doi: 10.1002/jrsm.1319. Epub 2018 Oct 9.
10
Exact confidence intervals for the average causal effect on a binary outcome.
Stat Med. 2016 Mar 15;35(6):957-60. doi: 10.1002/sim.6764.

本文引用的文献

1
A Bayesian approach to subgroup identification.
J Biopharm Stat. 2014;24(1):110-29. doi: 10.1080/10543406.2013.856026.
2
EFFECTIVELY SELECTING A TARGET POPULATION FOR A FUTURE COMPARATIVE STUDY.
J Am Stat Assoc. 2013 Jan 1;108(502):527-539. doi: 10.1080/01621459.2013.770705.
3
Estimating Individualized Treatment Rules Using Outcome Weighted Learning.
J Am Stat Assoc. 2012 Sep 1;107(449):1106-1118. doi: 10.1080/01621459.2012.695674.
4
Tweedie's Formula and Selection Bias.
J Am Stat Assoc. 2011;106(496):1602-1614. doi: 10.1198/jasa.2011.tm11181. Epub 2012 Jan 24.
5
Subgroup identification from randomized clinical trial data.
Stat Med. 2011 Oct 30;30(24):2867-80. doi: 10.1002/sim.4322. Epub 2011 Aug 4.
7
PERFORMANCE GUARANTEES FOR INDIVIDUALIZED TREATMENT RULES.
Ann Stat. 2011 Apr 1;39(2):1180-1210. doi: 10.1214/10-AOS864.
8
Bayesian models for subgroup analysis in clinical trials.
Clin Trials. 2011 Apr;8(2):129-43. doi: 10.1177/1740774510396933. Epub 2011 Jan 31.
9
The Future of Indirect Evidence.
Stat Sci. 2010 May;25(2):145-157. doi: 10.1214/09-STS308.
10
Analysis of randomized comparative clinical trial data for personalized treatment selections.
Biostatistics. 2011 Apr;12(2):270-82. doi: 10.1093/biostatistics/kxq060. Epub 2010 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验