Suppr超能文献

临床试验中亚组分析的贝叶斯模型。

Bayesian models for subgroup analysis in clinical trials.

机构信息

School of Social and Community Medicine, University of Bristol, UK.

出版信息

Clin Trials. 2011 Apr;8(2):129-43. doi: 10.1177/1740774510396933. Epub 2011 Jan 31.

Abstract

BACKGROUND

In a pharmaceutical drug development setting, possible interactions between the treatment and particular baseline clinical or demographic factors are often of interest. However, the subgroup analysis required to investigate such associations remains controversial. Concerns with classical hypothesis testing approaches to the problem include low power, multiple testing, and the possibility of data dredging.

PURPOSE

As an alternative to hypothesis testing, the use of shrinkage estimation techniques is investigated in the context of an exploratory post hoc subgroup analysis. A range of models that have been suggested in the literature are reviewed. Building on this, we explore a general modeling strategy, considering various options for shrinkage of effect estimates. This is applied to a case-study, in which evidence was available from seven-phase II-III clinical trials examining a novel therapy, and also to two artificial datasets with the same structure.

METHODS

Emphasis is placed on hierarchical modeling techniques, adopted within a Bayesian framework using freely available software. A range of possible subgroup model structures are applied, each incorporating shrinkage estimation techniques.

RESULTS

The investigation of the case-study showed little evidence of subgroup effects. Because inferences appeared to be consistent across a range of well-supported models, and model diagnostic checks showed no obvious problems, it seemed this conclusion was robust. It is reassuring that the structured shrinkage techniques appeared to work well in a situation where deeper inspection of the data suggested little evidence of subgroup effects.

LIMITATIONS

The post hoc examination of subgroups should be seen as an exploratory analysis, used to help make better informed decisions regarding potential future studies examining specific subgroups. To a certain extent, the degree of understanding provided by such assessments will be limited by the quality and quantity of available data.

CONCLUSIONS

In light of recent interest by health authorities into the use of subgroup analysis in the context of drug development, it appears that Bayesian approaches involving shrinkage techniques could play an important role in this area. Hopefully, the developments outlined here provide useful methodology for tackling such a problem, in-turn leading to better informed decisions regarding subgroups.

摘要

背景

在药物开发环境中,治疗与特定基线临床或人口统计学因素之间的可能相互作用通常很重要。然而,为了研究这些关联,需要进行亚组分析,这仍然存在争议。针对此类问题,经典假设检验方法存在的问题包括检验效能低、多次检验和数据挖掘的可能性。

目的

作为假设检验的替代方法,本文研究了收缩估计技术在探索性事后亚组分析中的应用。本文回顾了文献中提出的一系列模型,并在此基础上探讨了一种通用的建模策略,考虑了收缩效应估计的各种选择。该方法应用于一项案例研究,该研究有来自 7 项 II-III 期临床试验的证据,这些试验检查了一种新疗法,还应用于具有相同结构的两个人工数据集。

方法

重点是采用贝叶斯框架下的分层建模技术,使用免费软件实现。应用了一系列可能的亚组模型结构,每个结构都包含收缩估计技术。

结果

案例研究的结果表明,亚组效应的证据很少。由于在一系列支持良好的模型中得出的推论似乎一致,并且模型诊断检查没有明显的问题,因此该结论似乎是稳健的。令人欣慰的是,在数据深度检查表明亚组效应证据很少的情况下,结构收缩技术似乎效果良好。

局限性

事后亚组分析应被视为探索性分析,用于帮助做出有关检查特定亚组的潜在未来研究的更明智的决策。在某种程度上,这种评估提供的理解程度将受到可用数据的质量和数量的限制。

结论

鉴于健康当局最近对药物开发背景下亚组分析的使用产生了兴趣,涉及收缩技术的贝叶斯方法似乎可以在该领域发挥重要作用。希望这里概述的发展为解决此类问题提供了有用的方法,从而为亚组问题做出更明智的决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验