Thompson Georgina L, Lane J Robert, Coudrat Thomas, Sexton Patrick M, Christopoulos Arthur, Canals Meritxell
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (G.L.T., J.R.L., T.C., P.M.S., A.C., M.C.); and Defence Science and Technology Organisation, Department of Defence, Fishermans Bend, Victoria, Australia (G.L.T.).
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (G.L.T., J.R.L., T.C., P.M.S., A.C., M.C.); and Defence Science and Technology Organisation, Department of Defence, Fishermans Bend, Victoria, Australia (G.L.T.)
Mol Pharmacol. 2015 Aug;88(2):335-46. doi: 10.1124/mol.115.098848. Epub 2015 May 26.
Biased agonism is having a major impact on modern drug discovery, and describes the ability of distinct G protein-coupled receptor (GPCR) ligands to activate different cell signaling pathways, and to result in different physiologic outcomes. To date, most studies of biased agonism have focused on synthetic molecules targeting various GPCRs; however, many of these receptors have multiple endogenous ligands, suggesting that "natural" bias may be an unappreciated feature of these GPCRs. The μ-opioid receptor (MOP) is activated by numerous endogenous opioid peptides, remains an attractive therapeutic target for the treatment of pain, and exhibits biased agonism in response to synthetic opiates. The aim of this study was to rigorously assess the potential for biased agonism in the actions of endogenous opioids at the MOP in a common cellular background, and compare these to the effects of the agonist d-Ala2-N-MePhe4-Gly-ol enkephalin (DAMGO). We investigated activation of G proteins, inhibition of cAMP production, extracellular signal-regulated kinase 1 and 2 phosphorylation, β-arrestin 1/2 recruitment, and MOP trafficking, and applied a novel analytical method to quantify biased agonism. Although many endogenous opioids displayed signaling profiles similar to that of DAMGO, α-neoendorphin, Met-enkephalin-Arg-Phe, and the putatively endogenous peptide endomorphin-1 displayed particularly distinct bias profiles. These may represent examples of natural bias if it can be shown that they have different signaling properties and physiologic effects in vivo compared with other endogenous opioids. Understanding how endogenous opioids control physiologic processes through biased agonism can reveal vital information required to enable the design of biased opioids with improved pharmacological profiles and treat diseases involving dysfunction of the endogenous opioid system.
偏向性激动作用对现代药物研发产生了重大影响,它描述了不同的G蛋白偶联受体(GPCR)配体激活不同细胞信号通路并导致不同生理结果的能力。迄今为止,大多数关于偏向性激动作用的研究都集中在针对各种GPCR的合成分子上;然而,这些受体中有许多具有多种内源性配体,这表明“天然”偏向性可能是这些GPCR未被充分认识的一个特征。μ-阿片受体(MOP)可被多种内源性阿片肽激活,仍然是治疗疼痛的一个有吸引力的治疗靶点,并且对合成阿片类药物表现出偏向性激动作用。本研究的目的是在常见的细胞背景下,严格评估内源性阿片类药物作用于MOP时产生偏向性激动作用的可能性,并将其与激动剂d-Ala2-N-MePhe4-Gly-ol脑啡肽(DAMGO)的作用效果进行比较。我们研究了G蛋白的激活、cAMP生成的抑制、细胞外信号调节激酶1和2的磷酸化、β-抑制蛋白1/2的募集以及MOP的转运,并应用一种新的分析方法来量化偏向性激动作用。尽管许多内源性阿片类药物显示出与DAMGO相似的信号特征,但α-新内啡肽、甲硫氨酸脑啡肽-精氨酸-苯丙氨酸以及假定的内源性肽内吗啡肽-1表现出特别明显的偏向性特征。如果能够证明它们与其他内源性阿片类药物相比在体内具有不同的信号特性和生理效应,那么这些可能代表天然偏向性的例子。了解内源性阿片类药物如何通过偏向性激动作用控制生理过程,可以揭示设计具有改善药理学特性的偏向性阿片类药物以及治疗涉及内源性阿片系统功能障碍疾病所需的关键信息。