Flinders Health Economics Group, Flinders University, Adelaide, Australia.
Centre for Health Economics, Monash University, Melbourne, Australia.
Diabetes Res Clin Pract. 2015 Aug;109(2):326-33. doi: 10.1016/j.diabres.2015.05.011. Epub 2015 May 12.
To compare the Diabetes-39 (D-39) with six multi-attribute utility (MAU) instruments (15D, AQoL-8D, EQ-5D, HUI3, QWB, and SF-6D), and to develop mapping algorithms which could be used to transform the D-39 scores into the MAU scores.
Self-reported diabetes sufferers (N=924) and members of the healthy public (N=1760), aged 18 years and over, were recruited from 6 countries (Australia 18%, USA 18%, UK 17%, Canada 16%, Norway 16%, and Germany 15%). Apart from the QWB which was distributed normally, non-parametric rank tests were used to compare subgroup utilities and D-39 scores. Mapping algorithms were estimated using ordinary least squares (OLS) and generalised linear models (GLM).
MAU instruments discriminated between diabetes patients and the healthy public; however, utilities varied between instruments. The 15D, SF-6D, AQoL-8D had the strongest correlations with the D-39. Except for the HUI3, there were significant differences by gender. Mapping algorithms based on the OLS estimator consistently gave better goodness-of-fit results. The mean absolute error (MAE) values ranged from 0.061 to 0.147, the root mean square error (RMSE) values 0.083 to 0.198, and the R-square statistics 0.428 and 0.610. Based on MAE and RMSE values the preferred mapping is D-39 into 15D. R-square statistics and the range of predicted utilities indicate the preferred mapping is D-39 into AQoL-8D.
Utilities estimated from different MAU instruments differ significantly and the outcome of a study could depend upon the instrument used. The algorithms reported in this paper enable D-39 data to be mapped into utilities predicted from any of six instruments. This provides choice for those conducting cost-utility analyses.
比较糖尿病-39 量表(D-39)与六种多属性效用(MAU)工具(15D、AQoL-8D、EQ-5D、HUI3、QWB 和 SF-6D),并开发可用于将 D-39 评分转换为 MAU 评分的映射算法。
从 6 个国家(澳大利亚 18%、美国 18%、英国 17%、加拿大 16%、挪威 16%和德国 15%)招募了年龄在 18 岁及以上的自我报告糖尿病患者(N=924)和健康公众成员(N=1760)。除 QWB 呈正态分布外,使用非参数秩检验比较亚组效用和 D-39 评分。使用普通最小二乘法(OLS)和广义线性模型(GLM)估计映射算法。
MAU 工具可区分糖尿病患者和健康公众;然而,各工具的效用值存在差异。15D、SF-6D 和 AQoL-8D 与 D-39 相关性最强。除 HUI3 外,不同性别之间存在显著差异。基于 OLS 估计器的映射算法始终给出更好的拟合优度结果。平均绝对误差(MAE)值范围为 0.061 至 0.147,均方根误差(RMSE)值范围为 0.083 至 0.198,R 平方统计值范围为 0.428 至 0.610。基于 MAE 和 RMSE 值,首选映射为 D-39 到 15D。R 平方统计值和预测效用范围表明,首选映射为 D-39 到 AQoL-8D。
不同 MAU 工具估计的效用值存在显著差异,研究结果可能取决于所使用的工具。本文报告的算法可将 D-39 数据映射到六种仪器之一预测的效用值。这为进行成本效用分析的人员提供了选择。