Thoma Lina, Dobrowinski Hyazinth, Finger Constanze, Guezguez Jamil, Linke Dirk, Sepulveda Edgardo, Muth Günther
Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie, Biotechnologie, Eberhard Karls Universitaet Tuebingen, Tuebingen, Germany.
Max-Planck-Institut für Entwicklungsbiologie, Tuebingen, Germany.
mBio. 2015 May 26;6(3):e02559-14. doi: 10.1128/mBio.02559-14.
Conjugative DNA transfer in mycelial Streptomyces is a unique process involving the transfer of a double-stranded plasmid from the donor into the recipient and the subsequent spreading of the transferred plasmid within the recipient mycelium. This process is associated with growth retardation of the recipient and manifested by the formation of circular inhibition zones, named pocks. To characterize the unique Streptomyces DNA transfer machinery, we replaced each gene of the conjugative 12.1-kbp Streptomyces venezuelae plasmid pSVH1, with the exception of the rep gene required for plasmid replication, with a hexanucleotide sequence. Only deletion of traB, encoding the FtsK-like DNA translocase, affected efficiency of the transfer dramatically and abolished pock formation. Deletion of spdB3, spd79, or spdB2 had a minor effect on transfer but prevented pock formation and intramycelial plasmid spreading. Biochemical characterization of the encoded proteins revealed that the GntR-type regulator TraR recognizes a specific sequence upstream of spdB3, while Orf108, SpdB2, and TraR bind to peptidoglycan. SpdB2 promoted spheroplast formation by T7 lysozyme and formed pores in artificial membranes. Bacterial two-hybrid analyses and chemical cross-linking revealed that most of the pSVH1-encoded proteins interacted with each other, suggesting a multiprotein DNA translocation complex of TraB and Spd proteins which directs intramycelial plasmid spreading.
Mycelial soil bacteria of the genus Streptomyces evolved specific resistance genes as part of the biosynthetic gene clusters to protect themselves from their own antibiotic, making streptomycetes a huge natural reservoir of antibiotic resistance genes for dissemination by horizontal gene transfer. Streptomyces conjugation is a unique process, visible on agar plates with the mere eye by the formation of circular inhibition zones, called pocks. To understand the Streptomyces conjugative DNA transfer machinery, which does not involve a type IV secretion system (T4SS), we made a thorough investigation of almost all genes/proteins of the model plasmid pSVH1. We identified all genes involved in transfer and intramycelial plasmid spreading and showed that the FtsK-like DNA translocase TraB interacts with multiple plasmid-encoded proteins. Our results suggest the existence of a macromolecular DNA translocation complex that directs intramycelial plasmid spreading.
在丝状链霉菌中,接合型DNA转移是一个独特的过程,涉及双链质粒从供体转移到受体,并随后在受体菌丝体内扩散。这个过程与受体的生长迟缓相关,并表现为形成圆形抑制区,即痘斑。为了表征链霉菌独特的DNA转移机制,我们用六核苷酸序列替换了委内瑞拉链霉菌12.1kb接合性质粒pSVH1的每个基因,但保留了质粒复制所需的rep基因。只有编码FtsK样DNA转位酶的traB缺失显著影响转移效率并消除痘斑形成。spdB3、spd79或spdB2的缺失对转移有轻微影响,但阻止了痘斑形成和菌丝体内质粒扩散。对编码蛋白的生化表征表明,GntR型调节因子TraR识别spdB3上游的特定序列,而Orf108、SpdB2和TraR与肽聚糖结合。SpdB2促进T7溶菌酶形成原生质球,并在人工膜中形成孔。细菌双杂交分析和化学交联表明,大多数pSVH1编码的蛋白相互作用,表明存在由TraB和Spd蛋白组成的多蛋白DNA易位复合物,其指导菌丝体内质粒扩散。
链霉菌属的丝状土壤细菌进化出特定的抗性基因作为生物合成基因簇的一部分,以保护自己免受自身抗生素的影响,使链霉菌成为通过水平基因转移传播抗生素抗性基因的巨大天然库。链霉菌接合是一个独特的过程,在琼脂平板上仅凭肉眼就能通过形成圆形抑制区(称为痘斑)观察到。为了了解不涉及IV型分泌系统(T4SS)的链霉菌接合型DNA转移机制,我们对模型质粒pSVH1的几乎所有基因/蛋白进行了深入研究。我们鉴定了所有参与转移和菌丝体内质粒扩散的基因,并表明FtsK样DNA转位酶TraB与多种质粒编码的蛋白相互作用。我们的结果表明存在一种指导菌丝体内质粒扩散的大分子DNA易位复合物。