Suppr超能文献

雷帕霉素作用机制靶点(mTOR)信号通路和S6激酶介导原代大鼠皮层神经元中的二氮嗪预处理。

The mechanistic target of rapamycin (mTOR) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons.

作者信息

Dutta Somhrita, Rutkai Ibolya, Katakam Prasad V G, Busija David W

机构信息

Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana, USA.

Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA.

出版信息

J Neurochem. 2015 Sep;134(5):845-56. doi: 10.1111/jnc.13181. Epub 2015 Jul 1.

Abstract

We examined the role of the mechanistic target of rapamycin (mTOR) pathway in delayed diazoxide (DZ)-induced preconditioning of cultured rat primary cortical neurons. Neurons were treated for 3 days with 500 μM DZ or feeding medium and then exposed to 3 h of continuous normoxia in Dulbecco's modified eagle medium with glucose or with 3 h of oxygen-glucose deprivation (OGD) followed by normoxia and feeding medium. The OGD decreased viability by 50%, depolarized mitochondria, and reduced mitochondrial respiration, whereas DZ treatment improved viability and mitochondrial respiration, and suppressed reactive oxygen species production, but did not restore mitochondrial membrane potential after OGD. Neuroprotection by DZ was associated with increased phosphorylation of protein kinase B (Akt), mTOR, and the major mTOR downstream substrate, S6 Kinase (S6K). The mTOR inhibitors rapamycin and Torin-1, as well as S6K-targeted siRNA abolished the protective effects of DZ. The effects of DZ on mitochondrial membrane potential and reactive oxygen species production were not affected by rapamycin. Preconditioning with DZ also changed mitochondrial and non-mitochondrial oxygen consumption rates. We conclude that in addition to reducing reactive oxygen species (ROS) production and mitochondrial membrane depolarization, DZ protects against OGD by activation of the Akt-mTOR-S6K pathway and by changes in mitochondrial respiration. Ischemic strokes have limited therapeutic options. Diazoxide (DZ) preconditioning can reduce neuronal damage. Using oxygen-glucose deprivation (OGD), we studied Akt/mTOR/S6K signaling and mitochondrial respiration in neuronal preconditioning. We found DZ protects neurons against OGD via the Akt/mTOR/S6K pathway and alters the mitochondrial and non-mitochondrial oxygen consumption rate. This suggests that the Akt/mTOR/S6k pathway and mitochondria are novel stroke targets.

摘要

我们研究了雷帕霉素的作用机制靶点(mTOR)通路在二氮嗪(DZ)诱导的培养大鼠原代皮质神经元延迟预处理中的作用。将神经元用500μM DZ或维持培养基处理3天,然后在含有葡萄糖的杜氏改良 Eagle培养基中暴露于3小时持续常氧环境,或经历3小时氧糖剥夺(OGD),随后再进行常氧和维持培养基处理。OGD使细胞活力降低50%,使线粒体去极化,并降低线粒体呼吸作用,而DZ处理可改善细胞活力和线粒体呼吸作用,并抑制活性氧的产生,但在OGD后不能恢复线粒体膜电位。DZ的神经保护作用与蛋白激酶B(Akt)、mTOR以及mTOR主要下游底物S6激酶(S6K)的磷酸化增加有关。mTOR抑制剂雷帕霉素和Torin-1,以及靶向S6K的小干扰RNA(siRNA)消除了DZ的保护作用。雷帕霉素不影响DZ对线粒体膜电位和活性氧产生的作用。DZ预处理还改变了线粒体和非线粒体的氧消耗率。我们得出结论,除了减少活性氧(ROS)的产生和线粒体膜去极化外,DZ还通过激活Akt-mTOR-S6K通路以及改变线粒体呼吸作用来保护细胞免受OGD损伤。缺血性中风的治疗选择有限。二氮嗪(DZ)预处理可减少神经元损伤。利用氧糖剥夺(OGD),我们研究了神经元预处理中的Akt/mTOR/S6K信号传导和线粒体呼吸作用。我们发现DZ通过Akt/mTOR/S6K通路保护神经元免受OGD损伤,并改变线粒体和非线粒体的氧消耗率。这表明Akt/mTOR/S6k通路和线粒体是中风的新靶点。

相似文献

6
Diazoxide induces delayed pre-conditioning in cultured rat cortical neurons.
J Neurochem. 2003 Nov;87(4):969-80. doi: 10.1046/j.1471-4159.2003.02072.x.
7
GSK-3β at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways.
Cardiovasc Res. 2011 Apr 1;90(1):49-56. doi: 10.1093/cvr/cvr002. Epub 2011 Jan 13.
10
Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide.
Am J Physiol Heart Circ Physiol. 2016 May 1;310(9):H1097-106. doi: 10.1152/ajpheart.00759.2015. Epub 2016 Mar 4.

引用本文的文献

1
2
Rapamycin improves satellite cells' autophagy and muscle regeneration during hypercapnia.
JCI Insight. 2025 Jan 9;10(1):e182842. doi: 10.1172/jci.insight.182842.
3
Three-dimensional object geometry of mitochondria-associated signal: 3-D analysis pipeline for two-photon image stacks of cerebrovascular endothelial mitochondria.
Am J Physiol Heart Circ Physiol. 2024 May 1;326(5):H1291-H1303. doi: 10.1152/ajpheart.00101.2024. Epub 2024 Mar 22.
4
Breast adipose tissue-derived extracellular vesicles from obese women alter tumor cell metabolism.
EMBO Rep. 2023 Dec 6;24(12):e57339. doi: 10.15252/embr.202357339. Epub 2023 Nov 6.
5
Detrimental effects of transient cerebral ischemia on middle cerebral artery mitochondria in female rats.
Am J Physiol Heart Circ Physiol. 2022 Dec 1;323(6):H1343-H1351. doi: 10.1152/ajpheart.00346.2022. Epub 2022 Nov 11.
6
Dysregulation of mTOR Signaling after Brain Ischemia.
Int J Mol Sci. 2022 Mar 4;23(5):2814. doi: 10.3390/ijms23052814.
7
Hamartin: An Endogenous Neuroprotective Molecule Induced by Hypoxic Preconditioning.
Front Genet. 2020 Sep 30;11:582368. doi: 10.3389/fgene.2020.582368. eCollection 2020.
8
Role of mTORC1 Controlling Proteostasis after Brain Ischemia.
Front Neurosci. 2018 Feb 15;12:60. doi: 10.3389/fnins.2018.00060. eCollection 2018.
9
Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer's disease and vascular cognitive impairment.
Am J Physiol Heart Circ Physiol. 2018 Apr 1;314(4):H693-H703. doi: 10.1152/ajpheart.00570.2017. Epub 2017 Dec 22.
10
Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide.
Am J Physiol Heart Circ Physiol. 2016 May 1;310(9):H1097-106. doi: 10.1152/ajpheart.00759.2015. Epub 2016 Mar 4.

本文引用的文献

1
Sustained mitochondrial functioning in cerebral arteries after transient ischemic stress in the rat: a potential target for therapies.
Am J Physiol Heart Circ Physiol. 2014 Oct 1;307(7):H958-66. doi: 10.1152/ajpheart.00405.2014. Epub 2014 Jul 25.
2
Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function.
J Mol Cell Cardiol. 2014 Sep;74(100):340-52. doi: 10.1016/j.yjmcc.2014.06.013. Epub 2014 Jun 28.
3
Diversity of mitochondria-dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin-resistant rats.
Am J Physiol Heart Circ Physiol. 2014 Aug 15;307(4):H493-503. doi: 10.1152/ajpheart.00091.2014.
4
Mitochondrial mechanisms in cerebral vascular control: shared signaling pathways with preconditioning.
J Vasc Res. 2014;51(3):175-89. doi: 10.1159/000360765. Epub 2014 May 22.
5
SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts.
Am J Physiol Heart Circ Physiol. 2014 Jun 15;306(12):H1602-9. doi: 10.1152/ajpheart.00027.2014. Epub 2014 Apr 18.
6
The intensive care management of acute ischemic stroke: an overview.
Intensive Care Med. 2014 May;40(5):640-53. doi: 10.1007/s00134-014-3266-z.
7
Regulation of O2 consumption by the PI3K and mTOR pathways contributes to tumor hypoxia.
Radiother Oncol. 2014 Apr;111(1):72-80. doi: 10.1016/j.radonc.2014.02.007. Epub 2014 Mar 13.
9
Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress.
Am J Physiol Heart Circ Physiol. 2013 Oct 15;305(8):H1131-40. doi: 10.1152/ajpheart.00063.2013. Epub 2013 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验