Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee.
Am J Physiol Heart Circ Physiol. 2013 Oct 15;305(8):H1131-40. doi: 10.1152/ajpheart.00063.2013. Epub 2013 Aug 16.
Superoxide (O2(·-)) production by the NADPH oxidases is implicated in the pathogenesis of many cardiovascular diseases, including hypertension. We have previously shown that activation of NADPH oxidases increases mitochondrial O2(·-) which is inhibited by the ATP-sensitive K(+) channel (mitoKATP) inhibitor 5-hydroxydecanoic acid and that scavenging of mitochondrial or cytoplasmic O2(·-) inhibits hypertension. We hypothesized that mitoKATP-mediated mitochondrial O2(·-) potentiates cytoplasmic O2(·-) by stimulation of NADPH oxidases. In this work we studied Nox isoforms as a potential target of mitochondrial O2(·-). We tested contribution of reverse electron transfer (RET) from complex II to complex I in mitochondrial O2(·-) production and NADPH oxidase activation in human aortic endothelial cells. Activation of mitoKATP with low dose of diazoxide (100 nM) decreased mitochondrial membrane potential (tetramethylrhodamine methyl ester probe) and increased production of mitochondrial and cytoplasmic O2(·-) measured by site-specific probes and mitoSOX. Inhibition of RET with complex II inhibitor (malonate) or complex I inhibitor (rotenone) attenuated the production of mitochondrial and cytoplasmic O2(·-). Supplementation with a mitochondria-targeted SOD mimetic (mitoTEMPO) or a mitochondria-targeted glutathione peroxidase mimetic (mitoEbselen) inhibited production of mitochondrial and cytoplasmic O2(·-). Inhibition of Nox2 (gp91ds) or Nox2 depletion with small interfering RNA but not Nox1, Nox4, or Nox5 abolished diazoxide-induced O2(·-) production in the cytoplasm. Treatment of angiotensin II-infused mice with RET inhibitor dihydroethidium (malate) significantly reduced blood pressure. Our study suggests that mitoKATP-mediated mitochondrial O2(·-) stimulates cytoplasmic Nox2, contributing to the development of endothelial oxidative stress and hypertension.
超氧阴离子(O2(·-)) 的产生与 NADPH 氧化酶有关,这与许多心血管疾病的发病机制有关,包括高血压。我们之前的研究表明,NADPH 氧化酶的激活会增加线粒体中的 O2(·-),而这种增加可以被三磷酸腺苷敏感性钾通道(mitoKATP)抑制剂 5-羟癸酸所抑制,并且清除线粒体或细胞质中的 O2(·-)可以抑制高血压。我们假设 mitoKATP 介导的线粒体 O2(·-) 通过刺激 NADPH 氧化酶来增强细胞质中的 O2(·-)。在这项工作中,我们研究了 Nox 同工酶作为线粒体 O2(·-)的潜在靶点。我们测试了来自复合物 II 的反向电子传递(RET)对线粒体 O2(·-)产生和 NADPH 氧化酶激活的贡献在人主动脉内皮细胞中。用低剂量的 diazoxide(100 nM)激活 mitoKATP 会降低线粒体膜电位(四甲基罗丹明甲酯探针),并增加线粒体和细胞质 O2(·-)的产生,这是通过特异性探针和 mitoSOX 测量的。用复合物 II 抑制剂(丙二酸)或复合物 I 抑制剂(鱼藤酮)抑制 RET 会减弱线粒体和细胞质 O2(·-)的产生。用线粒体靶向 SOD 模拟物(mitoTEMPO)或线粒体靶向谷胱甘肽过氧化物酶模拟物(mitoEbselen)补充会抑制线粒体和细胞质 O2(·-)的产生。用 Nox2(gp91ds)抑制剂或用小干扰 RNA 耗尽 Nox2 但不是 Nox1、Nox4 或 Nox5 可以消除 diazoxide 诱导的细胞质中 O2(·-)的产生。用 RET 抑制剂二氢乙啶(马来酸盐)处理血管紧张素 II 输注的小鼠可显著降低血压。我们的研究表明,mitoKATP 介导的线粒体 O2(·-)刺激细胞质 Nox2,导致内皮氧化应激和高血压的发生。