Balnis Joseph, Jackson Emily L, Drake Lisa A, Singer Diane V, Bossardi Ramos Ramon, Singer Harold A, Jaitovich Ariel
Division of Pulmonary and Critical Care Medicine and.
Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA.
JCI Insight. 2025 Jan 9;10(1):e182842. doi: 10.1172/jci.insight.182842.
Both CO2 retention, or hypercapnia, and skeletal muscle dysfunction predict higher mortality in critically ill patients. Mechanistically, muscle injury and reduced myogenesis contribute to critical illness myopathy, and while hypercapnia causes muscle wasting, no research has been conducted on hypercapnia-driven dysfunctional myogenesis in vivo. Autophagy flux regulates myogenesis by supporting skeletal muscle stem cell - satellite cell - activation, and previous data suggest that hypercapnia inhibits autophagy. We tested whether hypercapnia worsens satellite cell autophagy flux and myogenic potential and if autophagy induction reverses these deficits. Satellite cell transplantation and lineage-tracing experiments showed that hypercapnia undermined satellite cells' activation, replication, and myogenic capacity. Bulk and single-cell sequencing analyses indicated that hypercapnia disrupts autophagy, senescence, and other satellite cell programs. Autophagy activation was reduced in hypercapnic cultured myoblasts, and autophagy genetic knockdown phenocopied these changes in vitro. Rapamycin stimulation led to AMPK activation and downregulation of the mTOR pathway, which are both associated with accelerated autophagy flux and cell replication. Moreover, hypercapnic mice receiving rapamycin showed improved satellite cell autophagy flux, activation, replication rate, and posttransplantation myogenic capacity. In conclusion, we have shown that hypercapnia interferes with satellite cell activation, autophagy flux, and myogenesis, and systemic rapamycin administration improves these outcomes.
二氧化碳潴留(即高碳酸血症)和骨骼肌功能障碍均预示着危重症患者的死亡率更高。从机制上讲,肌肉损伤和肌生成减少会导致危重症性肌病,虽然高碳酸血症会导致肌肉萎缩,但尚未有关于高碳酸血症在体内驱动的功能失调性肌生成的研究。自噬通量通过支持骨骼肌干细胞(卫星细胞)的激活来调节肌生成,先前的数据表明高碳酸血症会抑制自噬。我们测试了高碳酸血症是否会恶化卫星细胞的自噬通量和肌生成潜能,以及自噬诱导是否能逆转这些缺陷。卫星细胞移植和谱系追踪实验表明,高碳酸血症会破坏卫星细胞的激活、增殖和肌生成能力。大量测序和单细胞测序分析表明,高碳酸血症会扰乱自噬、衰老和其他卫星细胞程序。在高碳酸血症培养的成肌细胞中,自噬激活减少,体外自噬基因敲除模拟了这些变化。雷帕霉素刺激导致AMPK激活和mTOR通路下调,这两者都与加速自噬通量和细胞增殖有关。此外,接受雷帕霉素的高碳酸血症小鼠的卫星细胞自噬通量、激活、增殖率和移植后的肌生成能力均有所改善。总之,我们已经表明,高碳酸血症会干扰卫星细胞激活、自噬通量和肌生成,而全身性给予雷帕霉素可改善这些结果。