Suppr超能文献

腹腔镜Roux-en-Y胃旁路术后体重过度减轻的预测:来自人工神经网络的数据。

Prediction of excess weight loss after laparoscopic Roux-en-Y gastric bypass: data from an artificial neural network.

作者信息

Wise Eric S, Hocking Kyle M, Kavic Stephen M

机构信息

Department of Surgery, Vanderbilt University Medical Center, 1161 21st Ave S, MCN T2121, Nashville, TN, 37232-2730, USA.

Department of General Surgery, University of Maryland Medical Center, Baltimore, MD, USA.

出版信息

Surg Endosc. 2016 Feb;30(2):480-488. doi: 10.1007/s00464-015-4225-7. Epub 2015 May 28.

Abstract

INTRODUCTION

Laparoscopic Roux-en-Y gastric bypass (LRYGB) has become the gold standard for surgical weight loss. The success of LRYGB may be measured by excess body mass index loss (%EBMIL) over 25 kg/m(2), which is partially determined by multiple patient factors. In this study, artificial neural network (ANN) modeling was used to derive a reasonable estimate of expected postoperative weight loss using only known preoperative patient variables. Additionally, ANN modeling allowed for the discriminant prediction of achievement of benchmark 50% EBMIL at 1 year postoperatively.

METHODS

Six hundred and forty-seven LRYGB included patients were retrospectively reviewed for preoperative factors independently associated with EBMIL at 180 and 365 days postoperatively (EBMIL180 and EBMIL365, respectively). Previously validated factors were selectively analyzed, including age; race; gender; preoperative BMI (BMI0); hemoglobin; and diagnoses of hypertension (HTN), diabetes mellitus (DM), and depression or anxiety disorder. Variables significant upon multivariate analysis (P < .05) were modeled by "traditional" multiple linear regression and an ANN, to predict %EBMIL180 and %EBMIL365.

RESULTS

The mean EBMIL180 and EBMIL365 were 56.4 ± 16.5 % and 73.5 ± 21.5%, corresponding to total body weight losses of 25.7 ± 5.9% and 33.6 ± 8.0%, respectively. Upon multivariate analysis, independent factors associated with EBMIL180 included black race (B = -6.3%, P < .001), BMI0 (B = -1.1%/unit BMI, P < .001), and DM (B = -3.2%, P < .004). For EBMIL365, independently associated factors were female gender (B = 6.4%, P < .001), black race (B = -6.7%, P < .001), BMI0 (B = -1.2%/unit BMI, P < .001), HTN (B = -3.7%, P = .03), and DM (B = -6.0%, P < .001). Pearson r(2) values for the multiple linear regression and ANN models were 0.38 (EBMIL180) and 0.35 (EBMIL365), and 0.42 (EBMIL180) and 0.38 (EBMIL365), respectively. ANN prediction of benchmark 50% EBMIL at 365 days generated an area under the curve of 0.78 ± 0.03 in the training set (n = 518) and 0.83 ± 0.04 (n = 129) in the validation set.

CONCLUSIONS

Available at https://redcap.vanderbilt.edu/surveys/?s=3HCR43AKXR, this or other ANN models may be used to provide an optimized estimate of postoperative EBMIL following LRYGB.

摘要

引言

腹腔镜Roux-en-Y胃旁路术(LRYGB)已成为手术减肥的金标准。LRYGB的成功可以通过超过25kg/m²的超重体重指数损失(%EBMIL)来衡量,这部分取决于多个患者因素。在本研究中,人工神经网络(ANN)建模仅使用已知的术前患者变量来合理估计术后预期体重减轻。此外,ANN建模还可以对术后1年达到基准50%EBMIL进行判别预测。

方法

对647例接受LRYGB手术的患者进行回顾性分析,以确定与术后180天和365天(分别为EBMIL180和EBMIL365)的EBMIL独立相关的术前因素。对先前验证过的因素进行选择性分析,包括年龄、种族、性别、术前体重指数(BMI0)、血红蛋白以及高血压(HTN)、糖尿病(DM)和抑郁或焦虑症的诊断。多变量分析中具有显著性的变量(P < 0.05)通过“传统”多元线性回归和ANN进行建模,以预测%EBMIL180和%EBMIL365。

结果

EBMIL180和EBMIL365的平均值分别为56.4±16.5%和73.5±21.5%,分别对应总体重减轻25.7±5.9%和33.6±8.0%。多变量分析显示,与EBMIL180独立相关的因素包括黑人种族(B = -6.3%,P < 0.001)、BMI0(B = -1.1%/单位BMI,P < 0.001)和DM(B = -3.2%,P < 0.004)。对于EBMIL365,独立相关因素为女性性别(B = 6.4%,P < 0.001)、黑人种族(B = -6.7%,P < 0.001)、BMI0(B = -1.2%/单位BMI,P < 0.001)、HTN(B = -3.7%,P = 0.03)和DM(B = -6.0%,P < 0.001)。多元线性回归和ANN模型的Pearson r²值分别为0.38(EBMIL180)和0.35(EBMIL365),以及0.42(EBMIL180)和0.38(EBMIL365)。ANN对术后365天达到基准50%EBMIL的预测在训练集(n = 518)中的曲线下面积为0.78±0.03,在验证集(n = 129)中的曲线下面积为0.83±0.04。

结论

可在https://redcap.vanderbilt.edu/surveys/?s=3HCR43AKXR获取,此ANN模型或其他ANN模型可用于提供LRYGB术后EBMIL的优化估计。

相似文献

1
Prediction of excess weight loss after laparoscopic Roux-en-Y gastric bypass: data from an artificial neural network.
Surg Endosc. 2016 Feb;30(2):480-488. doi: 10.1007/s00464-015-4225-7. Epub 2015 May 28.
4
Predictors of Inadequate Weight Loss After Laparoscopic Gastric Bypass for Morbid Obesity.
Obes Surg. 2017 Jun;27(6):1446-1452. doi: 10.1007/s11695-016-2500-x.
7
Total weight loss after laparoscopic Roux-en-Y gastric bypass is influenced by preoperative weight loss: can we predict the outcome?
Surg Obes Relat Dis. 2020 Nov;16(11):1850-1856. doi: 10.1016/j.soard.2020.05.026. Epub 2020 May 28.
8
Predictors of metabolic syndrome persistence 1 year after laparoscopic Roux-en-Y gastric bypass.
Surg Obes Relat Dis. 2015 Sep-Oct;11(5):1054-60. doi: 10.1016/j.soard.2015.02.019. Epub 2015 Feb 25.
9
Outcomes of Laparoscopic Sleeve Gastrectomy and Roux-en-Y Gastric Bypass in Patients Older than 60.
Obes Surg. 2015 Dec;25(12):2251-6. doi: 10.1007/s11695-015-1712-9.

引用本文的文献

1
Prediction Model for Chronological Weight Loss After Bariatric Surgery in Korean Patients.
J Metab Bariatr Surg. 2024 Jun;13(1):8-16. doi: 10.17476/jmbs.2024.13.1.8. Epub 2024 Jun 4.
2
Machine Learning Model in Obesity to Predict Weight Loss One Year after Bariatric Surgery: A Pilot Study.
Biomedicines. 2024 May 25;12(6):1175. doi: 10.3390/biomedicines12061175.
3
Preoperative comorbidities as a predictor of EBWL after bariatric surgery: a retrospective cohort study.
Surg Endosc. 2024 May;38(5):2770-2776. doi: 10.1007/s00464-024-10785-z. Epub 2024 Apr 5.
4
Comparative Analysis of Various Weight Loss Success Criteria Models After Bariatric Metabolic Surgery in Korean Morbid Obese Patients.
J Metab Bariatr Surg. 2023 Dec;12(2):67-75. doi: 10.17476/jmbs.2023.12.2.67. Epub 2023 Dec 6.
5
Factors associated with different patterns of weight change after bariatric surgery: A longitudinal study.
Obes Sci Pract. 2023 Apr 28;9(5):477-483. doi: 10.1002/osp4.675. eCollection 2023 Oct.
6
Weight Loss Prediction after Metabolic and Bariatric Surgery.
J Obes Metab Syndr. 2023 Mar 30;32(1):46-54. doi: 10.7570/jomes23008. Epub 2023 Mar 22.
7
Prediction of thirty-day morbidity and mortality after duodenal switch using an artificial neural network.
Surg Endosc. 2023 Feb;37(2):1440-1448. doi: 10.1007/s00464-022-09378-5. Epub 2022 Jun 28.
8
Artificial Intelligence in Bariatric Surgery: Current Status and Future Perspectives.
Obes Surg. 2022 Aug;32(8):2772-2783. doi: 10.1007/s11695-022-06146-1. Epub 2022 Jun 17.
9
Current Applications of Artificial Intelligence in Bariatric Surgery.
Obes Surg. 2022 Aug;32(8):2717-2733. doi: 10.1007/s11695-022-06100-1. Epub 2022 May 26.

本文引用的文献

1
2
The physiology underlying Roux-en-Y gastric bypass: a status report.
Am J Physiol Regul Integr Comp Physiol. 2014 Dec 1;307(11):R1275-91. doi: 10.1152/ajpregu.00185.2014. Epub 2014 Sep 24.
3
Surgery for weight loss in adults.
Cochrane Database Syst Rev. 2014 Aug 8;2014(8):CD003641. doi: 10.1002/14651858.CD003641.pub4.
4
A closer look at the nature of anxiety in weight loss surgery candidates.
Int J Psychiatry Med. 2014;47(2):105-13. doi: 10.2190/PM.47.2.b.
6
Review article: The nutritional and pharmacological consequences of obesity surgery.
Aliment Pharmacol Ther. 2014 Sep;40(6):582-609. doi: 10.1111/apt.12872. Epub 2014 Jul 30.
7
Three-year weight outcomes from a bariatric surgery registry in a large integrated healthcare system.
Surg Obes Relat Dis. 2014 May-Jun;10(3):396-403. doi: 10.1016/j.soard.2014.02.044. Epub 2014 Mar 14.
8
A patient-centered electronic tool for weight loss outcomes after Roux-en-Y gastric bypass.
J Obes. 2014;2014:364941. doi: 10.1155/2014/364941. Epub 2014 Mar 20.
9
Eating behavior and eating disorders in adults before bariatric surgery.
Int J Eat Disord. 2015 Mar;48(2):215-22. doi: 10.1002/eat.22275. Epub 2014 Apr 9.
10
Imaging of bariatric surgery: normal anatomy and postoperative complications.
Radiology. 2014 Feb;270(2):327-41. doi: 10.1148/radiol.13122520.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验