Marchant Nathan J, Whitaker Leslie R, Bossert Jennifer M, Harvey Brandon K, Hope Bruce T, Kaganovsky Konstantin, Adhikary Sweta, Prisinzano Thomas E, Vardy Eyal, Roth Bryan L, Shaham Yavin
Behavioral Neuroscience Research Branch, IRP-NIDA, NIH, Bethesda, MD, USA.
Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
Neuropsychopharmacology. 2016 Jan;41(2):402-9. doi: 10.1038/npp.2015.149. Epub 2015 May 28.
In the past decade, novel methods using engineered receptors have enabled researchers to manipulate neuronal activity with increased spatial and temporal specificity. One widely used chemogenetic method in mice and rats is the DREADD (designer receptors exclusively activated by designer drugs) system in which a mutated muscarinic G protein-coupled receptor is activated by an otherwise inert synthetic ligand, clozapine-N-oxide (CNO). Recently, the Roth laboratory developed a novel inhibitory DREADD in which a mutated kappa-opioid receptor (KORD) is activated by the pharmacologically inert drug salvinorin B (SalB; Vardy et al, 2015). They demonstrated the feasibility of using KORD to study brain circuits involved in motivated behavior in mice. Here, we used behavioral, electrophysiological, and neuroanatomical methods to demonstrate the feasibility of using the novel KORD to study brain circuits involved in motivated behavior in rats. In Exp. 1, we show that SalB dose-dependently decreased spontaneous and cocaine-induced locomotor activity in rats expressing KORD to midbrain (ventral tegmental area/substantia nigra). In Exp. 2, we show that SalB completely inhibited tonic firing in KORD-expressing putative dopamine neurons in midbrain. In Exp. 3, we used a 'retro-DREADD' dual-virus approach to restrict expression of KORD in ventral subiculum neurons that project to nucleus accumbens shell. We show that KORD activation selectively decreased novel context-induced Fos expression in this projection. Our results indicate that the novel KORD is a promising tool to selectively inactivate brain areas and neural circuits in rat studies of motivated behavior.
在过去十年中,使用工程受体的新方法使研究人员能够以更高的空间和时间特异性来操纵神经元活动。在小鼠和大鼠中广泛使用的一种化学遗传学方法是DREADD(仅由设计药物激活的设计受体)系统,其中一种突变的毒蕈碱型G蛋白偶联受体由原本无活性的合成配体氯氮平 - N - 氧化物(CNO)激活。最近,罗斯实验室开发了一种新型抑制性DREADD,其中一种突变的κ-阿片受体(KORD)由药理惰性药物Salvinorin B(SalB;瓦尔迪等人,2015年)激活。他们证明了使用KORD研究参与小鼠动机行为的脑回路的可行性。在这里,我们使用行为、电生理和神经解剖学方法来证明使用新型KORD研究大鼠动机行为中涉及的脑回路的可行性。在实验1中,我们表明SalB剂量依赖性地降低了表达KORD至中脑(腹侧被盖区/黑质)的大鼠的自发和可卡因诱导的运动活动。在实验2中,我们表明SalB完全抑制了中脑表达KORD的假定多巴胺能神经元的紧张性放电。在实验3中,我们使用了一种“逆向DREADD”双病毒方法来限制KORD在投射到伏隔核壳的腹侧下托神经元中的表达。我们表明KORD激活选择性地降低了该投射中由新环境诱导的Fos表达。我们的结果表明,新型KORD是在大鼠动机行为研究中选择性失活脑区和神经回路的一种有前途的工具。