Suppr超能文献

利用脑磁共振成像图谱确定年龄相关病理学的边界:统计方法的重要性。

Use of brain MRI atlases to determine boundaries of age-related pathology: the importance of statistical method.

作者信息

Dickie David Alexander, Job Dominic E, Gonzalez David Rodriguez, Shenkin Susan D, Wardlaw Joanna M

机构信息

Neuroimaging Sciences, Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh Medical School, Edinburgh, United Kingdom; Geriatric Medicine Unit, The University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.

Geriatric Medicine Unit, The University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) collaboration, Glasgow, United Kingdom.

出版信息

PLoS One. 2015 May 29;10(5):e0127939. doi: 10.1371/journal.pone.0127939. eCollection 2015.

Abstract

INTRODUCTION

Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient's brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ± standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer's disease (AD) patients.

METHODS

Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55-90 years), we created: a mean ± SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients.

RESULTS

The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25-45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes.

DISCUSSION

To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease.

摘要

引言

通过将个体患者的脑磁共振成像(MRI)与基于体素的正常脑MRI图谱进行比较,可能有助于神经退行性疾病的诊断。当前大多数脑MRI图谱是针对年轻至中年成年人的,并且是参数化的,例如均值±标准差(SD);这些图谱要求数据呈高斯分布。来自正常老年受试者的脑MRI数据,例如灰质(GM)比例图像,显然不呈高斯分布。我们创建了老年受试者GM比例正常范围的非参数化图谱和参数化图谱,并比较了它们对阿尔茨海默病(AD)患者GM比例的分类。

方法

利用138名正常受试者和138名被诊断为AD的受试者(年龄均在55 - 90岁)的公开脑MRI数据,我们创建了:一个均值±标准差图谱,用于参数化估计正常衰老GM的百分位数排名和范围;另外,从相同的正常衰老受试者创建了一个基于秩次的非参数化GM图谱。然后根据每个图谱对AD患者的GM图像进行分类,以确定统计分布对AD患者GM比例分类的影响。

结果

参数化图谱常常将GM比例的正常下限定义为负数(从生理角度讲这是没有意义的,因为最低比例可能为零)。因此,对于大约一半的AD受试者,与参数化图谱相比时,25 - 45%的体素被分类为正常;但与非参数化图谱相比时,则被分类为异常。这些体素主要集中在额叶和枕叶。

讨论

据我们所知,我们展示了首个非参数化脑MRI图谱。在脑结构变异性增加的情况下,例如在老年时,非参数化脑MRI图谱可能比参数化方法更准确地代表正常脑结构的范围。因此,我们得出结论,应根据所研究的人群和目的来选择用于构建脑MRI图谱的统计方法。参数化方法通常在定义脑结构的中心趋势(例如均值)方面具有稳健性。在研究衰老和神经退行性疾病中脑结构的范围时,建议采用非参数化方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c2/4449178/9672b48605da/pone.0127939.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验