Langsi Victor K, Ashu-Arrah Benjamin A, Glennon Jeremy D
Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and the Analytical, Biological and Chemistry Research Facility (ABCRF), University College, Cork, Ireland.
Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and the Analytical, Biological and Chemistry Research Facility (ABCRF), University College, Cork, Ireland.
J Chromatogr A. 2015 Jul 10;1402:17-26. doi: 10.1016/j.chroma.2015.04.034. Epub 2015 Apr 27.
Nanometer control over the porous shell thickness of sub-2-μm-shell particles is investigated. Three seeded growth mesoporous thin shell particles for HPLC were prepared, with 0.05μm (or 50nm) porous shell layers: particle sizes 1.5μm (solid core diameters 1.4μm), 1.7μm (solid core diameter 1.6μm), 1.9μm (solid core diameter 1.8μm) and compared with a fourth 1.7μm particle (solid core diameter 1.4μm) surrounded by 0.15μm (or 150nm) porous shell thickness. The thin shell particles were functionalised using a mono-functional octadecyldimethylchlorosilane ligand (C20H43SiCl) under optimised reflux conditions and packed in-house in narrow bore columns (2.1 I.D.×50mm) denoted as TS1.5-50-C18, TS1.7-50-C18, and TS1.9-50-C18 respectively. The synthesised thin shell particles and bonded materials were comprehensively characterised using scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, BET analysis, elemental analysis (CHN), thermogravimetric analysis (TGA) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Experimental data from inverse size exclusion chromatography (ISEC) was used to measure external, internal and total column porosities. Five probe analytes (uracil, naphthalene, acetophenone, benzene and toluene) were chosen for the chromatographic performance analysis of these columns. Column evaluation and measurements of height equivalent to a theoretical plate (HETP) data were performed on naphthalene using 55% acetonitile in water. The retention coefficients for the thin shell particles (TS1.9-50-C18, TS1.7-50-C18, TS1.5-50-C18) were in the range 1.26-1.35 and 5.6 for the core-shell particle (EiS1.7-150-C18). The minimum reduced plate heights range from 3.89 to 4.26 for the thin shell particles and 2.03 for the core-shell particle.
研究了对亚2微米壳层颗粒多孔壳层厚度的纳米级控制。制备了三种用于高效液相色谱的种子生长介孔薄壳颗粒,其多孔壳层厚度为0.05μm(或50nm):粒径分别为1.5μm(实心核直径1.4μm)、1.7μm(实心核直径1.6μm)、1.9μm(实心核直径1.8μm),并与第四种1.7μm颗粒(实心核直径1.4μm)进行比较,该颗粒的多孔壳层厚度为0.15μm(或150nm)。在优化的回流条件下,使用单官能十八烷基二甲基氯硅烷配体(C20H43SiCl)对薄壳颗粒进行功能化,并在内部填充到内径为2.1mm×50mm的窄孔柱中,分别标记为TS1.5 - 50 - C18、TS1.7 - 50 - C18和TS1.9 - 50 - C18。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、动态光散射(DLS)、zeta电位、BET分析、元素分析(CHN)、热重分析(TGA)和漫反射红外傅里叶变换(DRIFT)光谱对合成的薄壳颗粒和键合材料进行了全面表征。使用反相尺寸排阻色谱(ISEC)的实验数据来测量柱外、柱内和总柱孔隙率。选择了五种探针分析物(尿嘧啶、萘、苯乙酮、苯和甲苯)用于这些柱的色谱性能分析。使用55%乙腈水溶液对萘进行柱评价和理论塔板高度等效值(HETP)数据的测量。薄壳颗粒(TS1.9 - 50 - C18、TS1.7 - 50 - C18、TS1.5 - 50 - C18)的保留系数在1.26 - 1.35范围内,核壳颗粒(EiS1.7 - 150 - C18)的保留系数为5.6。薄壳颗粒的最小折合塔板高度范围为3.89至4.26,核壳颗粒的最小折合塔板高度为2.03。