Suppr超能文献

人参 UDP-糖基转移酶催化原人参三醇和生物活性人参皂苷 F1 和 Rh1 生物合成的特性及其在代谢工程酵母中的应用。

Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts.

机构信息

CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.

出版信息

Mol Plant. 2015 Sep;8(9):1412-24. doi: 10.1016/j.molp.2015.05.010. Epub 2015 May 30.

Abstract

Ginsenosides, the main pharmacologically active natural compounds in ginseng (Panax ginseng), are mostly the glycosylated products of protopanaxadiol (PPD) and protopanaxatriol (PPT). No uridine diphosphate glycosyltransferase (UGT), which catalyzes PPT to produce PPT-type ginsenosides, has yet been reported. Here, we show that UGTPg1, which has been demonstrated to regio-specifically glycosylate the C20-OH of PPD, also specifically glycosylates the C20-OH of PPT to produce bioactive ginsenoside F1. We report the characterization of four novel UGT genes isolated from P. ginseng, sharing high deduced amino acid identity (>84%) with UGTPg1. We demonstrate that UGTPg100 specifically glycosylates the C6-OH of PPT to produce bioactive ginsenoside Rh1, and UGTPg101 catalyzes PPT to produce F1, followed by the generation of ginsenoside Rg1 from F1. However, UGTPg102 and UGTPg103 were found to have no detectable activity on PPT. Through structural modeling and site-directed mutagenesis, we identified several key amino acids of these UGTs that may play important roles in determining their activities and substrate regio-specificities. Moreover, we constructed yeast recombinants to biosynthesize F1 and Rh1 by introducing the genetically engineered PPT-producing pathway and UGTPg1 or UGTPg100. Our study reveals the possible biosynthetic pathways of PPT-type ginsenosides in Panax plants, and provides a sound manufacturing approach for bioactive PPT-type ginsenosides in yeast via synthetic biology strategies.

摘要

人参中的主要药理活性天然化合物——人参皂苷,大多是原二醇(PPD)和原三醇(PPT)的糖苷化产物。目前尚未有报道称尿苷二磷酸糖基转移酶(UGT)能催化 PPT 生成 PPT 型人参皂苷。在这里,我们发现已被证明能区域特异性地糖基化 PPD 的 C20-OH 的 UGTPg1,也能特异性地糖基化 PPT 的 C20-OH,生成生物活性的人参皂苷 F1。我们报告了从人参中分离出的四个新型 UGT 基因的特征,它们与 UGTPg1 的推导氨基酸同一性>84%。我们证明 UGTPg100 特异性地糖基化 PPT 的 C6-OH,生成生物活性的人参皂苷 Rh1,UGTPg101 催化 PPT 生成 F1,然后 F1 生成人参皂苷 Rg1。然而,发现 UGTPg102 和 UGTPg103 对 PPT 没有可检测到的活性。通过结构建模和定点突变,我们鉴定出这些 UGT 中的几个关键氨基酸,它们可能在决定它们的活性和底物区域特异性方面发挥重要作用。此外,我们通过引入基因工程 PPT 生成途径和 UGTPg1 或 UGTPg100,构建了酵母重组体来生物合成 F1 和 Rh1。我们的研究揭示了 Panax 植物中 PPT 型人参皂苷的可能生物合成途径,并通过合成生物学策略为酵母中生物活性的 PPT 型人参皂苷提供了可靠的制造方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验