Suppr超能文献

关于无大气球形天体的平均温度及地球大气热效应的大小

On the average temperature of airless spherical bodies and the magnitude of Earth's atmospheric thermal effect.

作者信息

Volokin Den, ReLlez Lark

机构信息

Tso Consulting, 843 E Three Fountains Suite 260, Salt Lake City, UT 84107 USA.

出版信息

Springerplus. 2014 Dec 10;3(1):723. doi: 10.1186/2193-1801-3-723. eCollection 2014.

Abstract

The presence of atmosphere can appreciably warm a planet's surface above the temperature of an airless environment. Known as a natural Greenhouse Effect (GE), this near-surface Atmospheric Thermal Enhancement (ATE) as named herein is presently entirely attributed to the absorption of up-welling long-wave radiation by greenhouse gases. Often quoted as 33 K for Earth, GE is estimated as a difference between planet's observed mean surface temperature and an effective radiating temperature calculated from the globally averaged absorbed solar flux using the Stefan-Boltzmann (SB) radiation law. This approach equates a planet's average temperature in the absence of greenhouse gases or atmosphere to an effective emission temperature assuming ATE ≡ GE. The SB law is also routinely employed to estimating the mean temperatures of airless bodies. We demonstrate that this formula as applied to spherical objects is mathematically incorrect owing to Hölder's inequality between integrals and leads to biased results such as a significant underestimation of Earth's ATE. We derive a new expression for the mean physical temperature of airless bodies based on an analytic integration of the SB law over a sphere that accounts for effects of regolith heat storage and cosmic background radiation on nighttime temperatures. Upon verifying our model against Moon surface temperature data provided by the NASA Diviner Lunar Radiometer Experiment, we propose it as a new analytic standard for evaluating the thermal environment of airless bodies. Physical evidence is presented that Earth's ATE should be assessed against the temperature of an equivalent airless body such as the Moon rather than a hypothetical atmosphere devoid of greenhouse gases. Employing the new temperature formula we show that Earth's total ATE is ~90 K, not 33 K, and that ATE = GE + TE, where GE is the thermal effect of greenhouse gases, while TE > 15 K is a thermodynamic enhancement independent of the atmospheric infrared back radiation. It is concluded that the contribution of greenhouse gases to Earth's ATE defined as GE = ATE - TE might be greater than 33 K, but will remain uncertain until the strength of the hereto identified TE is fully quantified by future research.

摘要

大气层的存在能使行星表面温度明显高于无空气环境下的温度。这种近地表大气热增强效应(ATE),也就是我们这里所说的自然温室效应(GE),目前完全归因于温室气体对向上传播的长波辐射的吸收。地球的温室效应通常被引用为33K,它被估计为行星观测到的平均表面温度与根据斯特藩 - 玻尔兹曼(SB)辐射定律从全球平均吸收太阳通量计算出的有效辐射温度之间的差值。这种方法将没有温室气体或大气层时行星的平均温度等同于假设ATE ≡ GE时的有效发射温度。SB定律也经常被用于估算无空气天体的平均温度。我们证明,由于积分之间的赫尔德不等式,这个应用于球形物体的公式在数学上是不正确的,并且会导致有偏差的结果,比如对地球ATE的显著低估。我们基于对SB定律在球体上的解析积分,推导出了一个关于无空气天体平均物理温度的新表达式,该表达式考虑了风化层蓄热和宇宙背景辐射对夜间温度的影响。在根据美国国家航空航天局(NASA)“月球辐射计探测仪实验”提供的月球表面温度数据验证我们的模型后,我们将其作为评估无空气天体热环境的新解析标准提出。有物理证据表明,地球的ATE应该根据等效无空气天体(如月球)的温度来评估,而不是根据没有温室气体的假设大气层的温度来评估。使用新的温度公式,我们表明地球的总ATE约为90K,而不是33K,并且ATE = GE + TE,其中GE是温室气体的热效应,而TE > 15K是一个独立于大气红外反向辐射的热力学增强效应。得出的结论是,定义为GE = ATE - TE的温室气体对地球ATE的贡献可能大于33K,但在未来研究完全量化迄今确定的TE的强度之前,仍将不确定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad6e/4447774/cb448eff9073/40064_2014_Article_1586_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验