Functional Materials and Microsystems Research Group and Micro Nano Research Facility, RMIT University, Melbourne, 3001, Victoria, Australia.
Small. 2015 Sep 16;11(35):4532-9. doi: 10.1002/smll.201500729. Epub 2015 Jun 5.
The concept of realizing electronic applications on elastically stretchable "skins" that conform to irregularly shaped surfaces is revolutionizing fundamental research into mechanics and materials that can enable high performance stretchable devices. The ability to operate electronic devices under various mechanically stressed states can provide a set of unique functionalities that are beyond the capabilities of conventional rigid electronics. Here, a distinctive microtectonic effect enabled oxygen-deficient, nanopatterned zinc oxide (ZnO) thin films on an elastomeric substrate are introduced to realize large area, stretchable, transparent, and ultraportable sensors. The unique surface structures are exploited to create stretchable gas and ultraviolet light sensors, where the functional oxide itself is stretchable, both of which outperform their rigid counterparts under room temperature conditions. Nanoscale ZnO features are embedded in an elastomeric matrix function as tunable diffraction gratings, capable of sensing displacements with nanometre accuracy. These devices and the microtectonic oxide thin film approach show promise in enabling functional, transparent, and wearable electronics.
在能够顺应不规则形状表面的弹性“皮肤”上实现电子应用的概念正在彻底改变力学和材料的基础研究,这将使高性能可拉伸器件成为可能。能够在各种机械应力状态下运行电子设备可以提供一组独特的功能,这是传统刚性电子设备所无法实现的。在这里,介绍了一种独特的微构造效应,即在弹性基底上实现了具有氧空位的纳米图案氧化锌(ZnO)薄膜,从而实现了大面积、可拉伸、透明和超便携传感器。利用独特的表面结构来创建可拉伸的气体和紫外线传感器,其中功能氧化物本身就是可拉伸的,在室温条件下,这两种传感器的性能都优于其刚性对应物。纳米级 ZnO 特征嵌入弹性基质中充当可调谐的衍射光栅,能够以纳米级精度感应位移。这些设备和微构造氧化物薄膜方法有望实现功能、透明和可穿戴电子产品。