Perea-Gil Isaac, Uriarte Juan J, Prat-Vidal Cristina, Gálvez-Montón Carolina, Roura Santiago, Llucià-Valldeperas Aida, Soler-Botija Carolina, Farré Ramon, Navajas Daniel, Bayes-Genis Antoni
ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol Badalona, Barcelona, Spain.
Biophysics and Bioengineering Unit, Faculty of Medicine, University of Barcelona Barcelona, Spain ; CIBER Enfermedades Respiratorias Madrid, Spain.
Am J Transl Res. 2015 Mar 15;7(3):558-73. eCollection 2015.
Selection of a biomaterial-based scaffold that mimics native myocardial extracellular matrix (ECM) architecture can facilitate functional cell attachment and differentiation. Although decellularized myocardial ECM accomplishes these premises, decellularization processes may variably distort or degrade ECM structure.
Two decellularization protocols (DP) were tested on porcine heart samples (epicardium, mid myocardium and endocardium). One protocol, DP1, was detergent-based (SDS and Triton X-100), followed by DNase I treatment. The other protocol, DP2, was focused in trypsin and acid with Triton X-100 treatments. Decellularized myocardial scaffolds were reseeded by embedding them in RAD16-I peptidic hydrogel with adipose tissue-derived progenitor cells (ATDPCs).
Both protocols yielded acellular myocardial scaffolds (~82% and ~94% DNA reduction for DP1 and DP2, respectively). Ultramicroscopic assessment of scaffolds was similar for both protocols and showed filamentous ECM with preserved fiber disposition and structure. DP1 resulted in more biodegradable scaffolds (P = 0.04). Atomic force microscopy revealed no substantial ECM stiffness changes post-decellularization compared to native tissue. The Young's modulus did not differ between heart layers (P = 0.69) or decellularization protocols (P = 0.15). After one week, recellularized DP1 scaffolds contained higher cell density (236 ± 106 and 98 ± 56 cells/mm(2) for recellularized DP1 and DP2 scaffolds, respectively; P = 0.04). ATDPCs in both DP1 and DP2 scaffolds expressed the endothelial marker isolectin B4, but only in the DP1 scaffold ATDPCs expressed the cardiac markers GATA4, connexin43 and cardiac troponin T.
In our hands, DP1 produced myocardial scaffolds with higher cell repopulation and promotes ATDPCs expression of endothelial and cardiomyogenic markers.
选择一种模仿天然心肌细胞外基质(ECM)结构的基于生物材料的支架可以促进功能性细胞附着和分化。尽管脱细胞心肌ECM实现了这些前提,但脱细胞过程可能会不同程度地扭曲或降解ECM结构。
在猪心脏样本(心外膜、心肌中层和心内膜)上测试了两种脱细胞方案(DP)。一种方案DP1,基于去污剂(十二烷基硫酸钠和曲拉通X-100),随后进行脱氧核糖核酸酶I处理。另一种方案DP2,重点是胰蛋白酶和酸与曲拉通X-100处理。将脱细胞心肌支架嵌入含脂肪组织来源祖细胞(ATDPCs)的RAD16-I肽水凝胶中进行重新接种。
两种方案均产生了无细胞心肌支架(DP1和DP2的DNA减少率分别约为82%和94%)。两种方案对支架的超微结构评估相似,显示丝状ECM的纤维排列和结构得以保留。DP1产生的支架更易生物降解(P = 0.04)。原子力显微镜显示,与天然组织相比,脱细胞后ECM刚度无显著变化。心脏各层之间的杨氏模量无差异(P = 0.69),脱细胞方案之间也无差异(P = 0.15)。一周后,重新细胞化的DP1支架细胞密度更高(重新细胞化的DP1和DP2支架分别为236±106和98±56个细胞/mm²;P = 0.04)。DP1和DP2支架中的ATDPCs均表达内皮标记物异凝集素B4,但仅在DP1支架中,ATDPCs表达心脏标记物GATA4、连接蛋白43和心肌肌钙蛋白T。
在我们的研究中,DP1产生的心肌支架具有更高的细胞再填充能力,并促进ATDPCs表达内皮和心肌生成标记物。