Suppr超能文献

用于最大权重子图的序贯蒙特卡罗方法及其在解决图像拼图问题中的应用

Sequential Monte Carlo for Maximum Weight Subgraphs with Application to Solving Image Jigsaw Puzzles.

作者信息

Adluru Nagesh, Yang Xingwei, Latecki Longin Jan

机构信息

University of Wisconsin, Madison, WI, USA.

Machine Learning Science Group at Amazon.com, Seattle, WA, USA.

出版信息

Int J Comput Vis. 2015 May 1;112(3):319-341. doi: 10.1007/s11263-014-0766-9.

Abstract

We consider a problem of finding maximum weight subgraphs (MWS) that satisfy hard constraints in a weighted graph. The constraints specify the graph nodes that must belong to the solution as well as mutual exclusions of graph nodes, i.e., pairs of nodes that cannot belong to the same solution. Our main contribution is a novel inference approach for solving this problem in a sequential monte carlo (SMC) sampling framework. Usually in an SMC framework there is a natural ordering of the states of the samples. The order typically depends on observations about the states or on the annealing setup used. In many applications (e.g., image jigsaw puzzle problems), all observations (e.g., puzzle pieces) are given at once and it is hard to define a natural ordering. Therefore, we relax the assumption of having ordered observations about states and propose a novel SMC algorithm for obtaining maximum estimate of a high-dimensional posterior distribution. This is achieved by exploring different orders of states and selecting the most informative permutations in each step of the sampling. Our experimental results demonstrate that the proposed inference framework significantly outperforms loopy belief propagation in solving the image jigsaw puzzle problem. In particular, our inference quadruples the accuracy of the puzzle assembly compared to that of loopy belief propagation.

摘要

我们考虑一个在加权图中寻找满足硬约束的最大权重子图(MWS)的问题。这些约束规定了必须属于解的图节点以及图节点之间的互斥关系,即不能属于同一解的节点对。我们的主要贡献是一种在顺序蒙特卡罗(SMC)采样框架中解决此问题的新颖推理方法。通常在SMC框架中,样本状态存在自然顺序。该顺序通常取决于对状态的观察或所使用的退火设置。在许多应用中(例如图像拼图问题),所有观察结果(例如拼图碎片)是一次性给出的,很难定义自然顺序。因此,我们放宽了对状态有有序观察的假设,并提出了一种新颖的SMC算法,用于获得高维后验分布的最大估计。这是通过探索不同的状态顺序并在采样的每个步骤中选择最具信息性的排列来实现的。我们的实验结果表明,所提出的推理框架在解决图像拼图问题时明显优于循环信念传播。特别是,与循环信念传播相比,我们的推理使拼图组装的准确率提高了四倍。

相似文献

2
Particle Filter with State Permutations for Solving Image Jigsaw Puzzles.用于解决图像拼图问题的具有状态排列的粒子滤波器
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2011 Jun;2011:2873-2880. doi: 10.1109/CVPR.2011.5995535. Epub 2011 Aug 22.
5
Solving Square Jigsaw Puzzle by Hierarchical Loop Constraints.层次循环约束求解方形拼图
IEEE Trans Pattern Anal Mach Intell. 2019 Sep;41(9):2222-2235. doi: 10.1109/TPAMI.2018.2857776. Epub 2018 Jul 19.
6
A new technique for solving puzzles.一种解决谜题的新技术。
IEEE Trans Syst Man Cybern B Cybern. 2010 Jun;40(3):789-97. doi: 10.1109/TSMCB.2009.2029868. Epub 2009 Oct 30.
9
Graph rigidity, cyclic belief propagation, and point pattern matching.图刚性、循环置信传播与点模式匹配。
IEEE Trans Pattern Anal Mach Intell. 2008 Nov;30(11):2047-54. doi: 10.1109/TPAMI.2008.124.
10

本文引用的文献

1
Shape Guided Contour Grouping with Particle Filters.基于粒子滤波器的形状引导轮廓分组
Proc IEEE Int Conf Comput Vis. 2009 Sep-Oct;2009:2288-2295. doi: 10.1109/ICCV.2009.5459446. Epub 2010 May 6.
2
Particle Filter with State Permutations for Solving Image Jigsaw Puzzles.用于解决图像拼图问题的具有状态排列的粒子滤波器
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2011 Jun;2011:2873-2880. doi: 10.1109/CVPR.2011.5995535. Epub 2011 Aug 22.
3
A path following algorithm for the graph matching problem.图匹配问题的路径跟踪算法。
IEEE Trans Pattern Anal Mach Intell. 2009 Dec;31(12):2227-42. doi: 10.1109/TPAMI.2008.245.
4
Point matching under large image deformations and illumination changes.大图像变形和光照变化下的点匹配
IEEE Trans Pattern Anal Mach Intell. 2004 Jun;26(6):674-88. doi: 10.1109/TPAMI.2004.2.
5
Matching by linear programming and successive convexification.通过线性规划和逐次凸化进行匹配。
IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):959-75. doi: 10.1109/TPAMI.2007.1048.
6
Dominant sets and pairwise clustering.主导集与成对聚类。
IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):167-72. doi: 10.1109/tpami.2007.250608.
7
Graphical models and point pattern matching.图形模型与点模式匹配。
IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1646-63. doi: 10.1109/TPAMI.2006.207.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验