Yin Junxiang, Han Pengcheng, Tang Zhiwei, Liu Qingwei, Shi Jiong
Department of Neurology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA.
Department of Radiology, Keller Center for Imaging Innovation, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA.
J Cereb Blood Flow Metab. 2015 Nov;35(11):1783-9. doi: 10.1038/jcbfm.2015.123. Epub 2015 Jun 10.
Stroke is one of the leading causes of death. Growing evidence indicates that ketone bodies have beneficial effects in treating stroke, but their underlying mechanism remains unclear. Our previous study showed ketone bodies reduced reactive oxygen species by using NADH as an electron donor, thus increasing the NAD(+)/NADH ratio. In this study, we investigated whether mitochondrial NAD(+)-dependent Sirtuin 3 (SIRT3) could mediate the neuroprotective effects of ketone bodies after ischemic stroke. We injected mice with either normal saline or ketones (beta-hydroxybutyrate and acetoacetate) at 30 minutes after ischemia induced by transient middle cerebral artery (MCA) occlusion. We found that ketone treatment enhanced mitochondria function, reduced oxidative stress, and therefore reduced infarct volume. This led to improved neurologic function after ischemia, including the neurologic score and the performance in Rotarod and open field tests. We further showed that ketones' effects were achieved by upregulating NAD(+)-dependent SIRT3 and its downstream substrates forkhead box O3a (FoxO3a) and superoxide dismutase 2 (SOD2) in the penumbra region since knocking down SIRT3 in vitro diminished ketones' beneficial effects. These results provide us a foundation to develop novel therapeutics targeting this SIRT3-FoxO3a-SOD2 pathway.
中风是主要的死亡原因之一。越来越多的证据表明,酮体在治疗中风方面具有有益作用,但其潜在机制仍不清楚。我们之前的研究表明,酮体以NADH作为电子供体来减少活性氧,从而提高NAD(+)/NADH比值。在本研究中,我们调查了线粒体NAD(+)依赖性去乙酰化酶3(SIRT3)是否能介导缺血性中风后酮体的神经保护作用。在短暂大脑中动脉(MCA)闭塞诱导缺血后30分钟,我们给小鼠注射生理盐水或酮体(β-羟基丁酸和乙酰乙酸)。我们发现,酮体治疗可增强线粒体功能,降低氧化应激,从而减小梗死体积。这导致缺血后神经功能得到改善,包括神经评分以及在转棒试验和旷场试验中的表现。我们进一步表明,酮体的作用是通过上调半暗带区域中NAD(+)依赖性SIRT3及其下游底物叉头框O3a(FoxO3a)和超氧化物歧化酶2(SOD2)来实现的,因为在体外敲低SIRT3会减弱酮体的有益作用。这些结果为开发针对这一SIRT3-FoxO3a-SOD2通路的新型疗法奠定了基础。