Suppr超能文献

临床生物标志物的验证有多难?

How difficult is the validation of clinical biomarkers?

作者信息

Voskuil Jan

机构信息

Everest Biotech Ltd, Upper Heyford, OX255HD, UK.

出版信息

F1000Res. 2015 Apr 28;4:101. doi: 10.12688/f1000research.6395.1. eCollection 2015.

Abstract

Recent developments of introducing stratified medicine/personal health care have led to an increased demand for specific biomarkers. However, despite the myriads of biomarkers claimed to be fit for all sorts of diseases and applications, the scientific integrity of the claims and therefore their credibility is far from satisfactory. Biomarker databases are met with scepticism. The reasons for this lack of faith come from different directions: lack of integrity of the biospecimen and meta-analysis of data derived from biospecimen prepared in various ways cause incoherence and false indications. Although the trend for antibody-independent assays is on the rise, demand for consistent performance of antibodies (both in choice of antibody and how to apply it in the correct dilution where applicable) in immune assays remains unmet in too many cases. Quantitative assays suffer from a lack of world-wide accepted criteria when the immune assay is not ELISA-based. Finally, statistical analysis suffer from coherence both in the way software packages are being scrutinized for mistakes in the script and remaining invisible after small-scale analysis, and in the way appropriate queries are fed into the packages in search for output that is fit for the types of data put in. Wrong queries would lead to wrong statistical conclusions, for example when data from a cohort of patients with different backgrounds are being analysed, or when one seeks an answer from software that was not designed for such query.

摘要

引入分层医学/个人医疗保健的最新进展导致对特定生物标志物的需求增加。然而,尽管声称有无数种生物标志物适用于各种疾病和应用,但这些说法的科学完整性以及因此而来的可信度却远远不能令人满意。生物标志物数据库受到怀疑。这种缺乏信任的原因来自不同方面:生物样本缺乏完整性以及对以各种方式制备的生物样本所衍生数据的荟萃分析导致不一致和错误指示。尽管非抗体检测的趋势在上升,但在免疫检测中,对抗体一致性能(包括抗体的选择以及在适用时如何以正确的稀释度应用它)的需求在太多情况下仍未得到满足。当免疫检测不是基于酶联免疫吸附测定(ELISA)时,定量检测缺乏全球公认的标准。最后,统计分析在两个方面存在连贯性问题,一方面是在检查软件包脚本中的错误以及小规模分析后这些错误仍不明显的方式上,另一方面是在将适当的查询输入软件包以寻找适合输入数据类型的输出的方式上。错误的查询会导致错误的统计结论,例如在分析来自不同背景患者群体的数据时,或者当从并非为此类查询设计的软件中寻求答案时。

相似文献

1
How difficult is the validation of clinical biomarkers?临床生物标志物的验证有多难?
F1000Res. 2015 Apr 28;4:101. doi: 10.12688/f1000research.6395.1. eCollection 2015.
6
[The origin of informed consent].[知情同意的起源]
Acta Otorhinolaryngol Ital. 2005 Oct;25(5):312-27.

本文引用的文献

1
Rampant software errors may undermine scientific results.猖獗的软件错误可能会破坏科学成果。
F1000Res. 2014 Dec 11;3:303. doi: 10.12688/f1000research.5930.2. eCollection 2014.
10
Journals unite for reproducibility.期刊为可重复性而联合。
Science. 2014 Nov 7;346(6210):679. doi: 10.1126/science.aaa1724.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验