Suppr超能文献

利用大规模平行报告基因检测和设计序列来理解顺式调控功能是如何在DNA序列中编码的。

Understanding how cis-regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences.

作者信息

White Michael A

机构信息

Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA.

出版信息

Genomics. 2015 Sep;106(3):165-170. doi: 10.1016/j.ygeno.2015.06.003. Epub 2015 Jun 10.

Abstract

Genome-scale methods have identified thousands of candidate cis-regulatory elements (CREs), but methods to directly assay the regulatory function of these elements on a comparably large scale have not been available. The inability to directly test and perturb the regulatory activity of large numbers of DNA sequences has hindered efforts to discover how cis-regulatory function is encoded in genomic sequence. Recently developed massively parallel reporter gene assays combine next generation sequencing with high-throughput oligonucleotide synthesis to offer the capacity to test and mutationally perturb thousands of specifically chosen or designed cis-regulatory sequences in a single experiment. These assays are the basis of recent studies that include large-scale functional validation of genomic CREs, exhaustive mutational analyses of individual regulatory sequences, and tests of large libraries of synthetic CREs. The results demonstrate how massively parallel reporter assays with libraries of designed sequences provide the statistical power required to address previously intractable questions about cis-regulatory function.

摘要

全基因组规模的方法已经鉴定出数千个候选顺式调控元件(CRE),但能够在相当大规模上直接检测这些元件调控功能的方法尚不存在。无法直接测试和扰动大量DNA序列的调控活性,阻碍了人们探索顺式调控功能是如何在基因组序列中编码的。最近开发的大规模平行报告基因检测技术,将下一代测序与高通量寡核苷酸合成相结合,能够在单个实验中测试和突变扰动数千个特定选择或设计的顺式调控序列。这些检测技术是近期研究的基础,这些研究包括对基因组CRE进行大规模功能验证、对单个调控序列进行详尽的突变分析,以及对合成CRE的大型文库进行测试。结果表明,利用设计序列文库进行大规模平行报告基因检测,如何提供解决以前关于顺式调控功能的棘手问题所需的统计能力。

相似文献

2
Decoding enhancers using massively parallel reporter assays.
Genomics. 2015 Sep;106(3):159-164. doi: 10.1016/j.ygeno.2015.06.005. Epub 2015 Jun 10.
3
STARR-seq - principles and applications.
Genomics. 2015 Sep;106(3):145-150. doi: 10.1016/j.ygeno.2015.06.001. Epub 2015 Jun 11.
4
High-Throughput Analysis of Retinal Cis-Regulatory Networks by Massively Parallel Reporter Assays.
Adv Exp Med Biol. 2019;1185:359-364. doi: 10.1007/978-3-030-27378-1_59.
5
A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity.
Genome Res. 2017 Jan;27(1):38-52. doi: 10.1101/gr.212092.116. Epub 2016 Nov 9.
7
A systematic evaluation of the design and context dependencies of massively parallel reporter assays.
Nat Methods. 2020 Nov;17(11):1083-1091. doi: 10.1038/s41592-020-0965-y. Epub 2020 Oct 12.
8
Sequence-based correction of barcode bias in massively parallel reporter assays.
Genome Res. 2021 Sep;31(9):1638-1645. doi: 10.1101/gr.268599.120. Epub 2021 Jul 20.
10
Massively parallel reporter assays in cultured mammalian cells.
J Vis Exp. 2014 Aug 17(90):51719. doi: 10.3791/51719.

引用本文的文献

1
Applications of high-throughput reporter assays to gene regulation studies.
Curr Opin Struct Biol. 2025 Jun 27;94:103105. doi: 10.1016/j.sbi.2025.103105.
2
Functional genomics in age-related macular degeneration: From genetic associations to understanding disease mechanisms.
Exp Eye Res. 2025 May;254:110344. doi: 10.1016/j.exer.2025.110344. Epub 2025 Mar 13.
3
HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo.
BMC Genomics. 2024 Dec 24;25(1):1240. doi: 10.1186/s12864-024-11162-9.
4
Automated Design of Oligopools and Rapid Analysis of Massively Parallel Barcoded Measurements.
ACS Synth Biol. 2024 Dec 20;13(12):4218-4232. doi: 10.1021/acssynbio.4c00661. Epub 2024 Dec 6.
5
HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo.
bioRxiv. 2024 Jun 12:2024.06.10.598329. doi: 10.1101/2024.06.10.598329.
6
Engineering is evolution: a perspective on design processes to engineer biology.
Nat Commun. 2024 Apr 29;15(1):3640. doi: 10.1038/s41467-024-48000-1.
8
Targeted mutagenesis and high-throughput screening of diversified gene and promoter libraries for isolating gain-of-function mutations.
Front Bioeng Biotechnol. 2023 Jul 17;11:1202388. doi: 10.3389/fbioe.2023.1202388. eCollection 2023.
10
A computational investigation of cis-gene regulation in evolution.
Theory Biosci. 2023 Jun;142(2):151-165. doi: 10.1007/s12064-023-00391-3. Epub 2023 Apr 11.

本文引用的文献

2
Enhancer evolution across 20 mammalian species.
Cell. 2015 Jan 29;160(3):554-66. doi: 10.1016/j.cell.2015.01.006.
3
The genetic and mechanistic basis for variation in gene regulation.
PLoS Genet. 2015 Jan 8;11(1):e1004857. doi: 10.1371/journal.pgen.1004857. eCollection 2015 Jan.
4
Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation.
Nature. 2015 Feb 26;518(7540):556-9. doi: 10.1038/nature13994. Epub 2014 Dec 15.
5
Systematic dissection of coding exons at single nucleotide resolution supports an additional role in cell-specific transcriptional regulation.
PLoS Genet. 2014 Oct 23;10(10):e1004592. doi: 10.1371/journal.pgen.1004592. eCollection 2014 Oct.
7
Saturation editing of genomic regions by multiplex homology-directed repair.
Nature. 2014 Sep 4;513(7516):120-3. doi: 10.1038/nature13695.
8
Absence of a simple code: how transcription factors read the genome.
Trends Biochem Sci. 2014 Sep;39(9):381-99. doi: 10.1016/j.tibs.2014.07.002. Epub 2014 Aug 14.
9
High-throughput functional testing of ENCODE segmentation predictions.
Genome Res. 2014 Oct;24(10):1595-602. doi: 10.1101/gr.173518.114. Epub 2014 Jul 17.
10
Probing the effect of promoters on noise in gene expression using thousands of designed sequences.
Genome Res. 2014 Oct;24(10):1698-706. doi: 10.1101/gr.168773.113. Epub 2014 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验