Loring John S, Chen Jeffrey, Bénézeth Pascale, Qafoku Odeta, Ilton Eugene S, Washton Nancy M, Thompson Christopher J, Martin Paul F, McGrail B Peter, Rosso Kevin M, Felmy Andrew R, Schaef Herbert T
†Pacific Northwest National Laboratory, Richland, Washington 99352 United States.
‡Géosciences Environnement Toulouse (GET), CNRS, UMR 5563, 14 Avenue Edouard Belin, 31400 Toulouse, France.
Langmuir. 2015 Jul 14;31(27):7533-43. doi: 10.1021/acs.langmuir.5b01052. Epub 2015 Jul 1.
Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and postreaction samples were examined by ex situ techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), focused ion beam transmission electron microscopy (FIB-TEM), thermal gravimetric analysis mass spectrometry (TGA-MS), and magic angle spinning nuclear magnetic resonance (MAS NMR). Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 μmol/m(2). Above this concentration and up to 76 μmol/m(2), monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 μmol/m(2), crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.
大陆溢流玄武岩因其含有活性二价阳离子的硅酸盐(如镁橄榄石(Mg2SiO4))而成为地质封存二氧化碳的理想地层,这种硅酸盐适合长期捕获矿化为金属碳酸盐的二氧化碳。本研究的目的是在分子水平上研究镁橄榄石与超临界二氧化碳(scCO2)反应过程中形成的碳酸化产物,该产物是吸附在镁橄榄石表面的水浓度的函数。实验在50°C和90巴下进行,采用原位红外滴定技术,反应后的样品通过非原位技术进行检测,包括扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、聚焦离子束透射电子显微镜(FIB-TEM)、热重分析质谱(TGA-MS)和魔角旋转核磁共振(MAS NMR)。碳酸化产物和反应程度随吸附水的含量变化很大。我们首次展示了在湿scCO2条件下镁碳酸盐表面络合的证据。在吸附水浓度低于27μmol/m²时,发现碳酸盐在镁橄榄石表面以主要为双齿的方式与镁配位。高于此浓度直至76μmol/m²,单齿配位络合物占主导。超过76μmol/m²的吸附水浓度阈值后,结晶碳酸盐以菱镁矿的形式持续沉淀,形成的颗粒比估计厚度约为7至15埃的吸附水膜大数百倍。在应用层面,这些结果表明,除非吸附水浓度足够高以促进结晶碳酸盐的形成,否则在井筒附近和盖层相邻的scCO2主导流体中的矿物碳酸化将微不足道,并且仅限于表面络合。在基础层面,表面络合物及其对吸附水浓度的依赖性为镁橄榄石溶解过程以及菱镁矿的成核和生长提供了见解。