Suppr超能文献

bHLH转录因子BIS1控制长春花中单萜吲哚生物碱途径的环烯醚萜分支。

The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus.

作者信息

Van Moerkercke Alex, Steensma Priscille, Schweizer Fabian, Pollier Jacob, Gariboldi Ivo, Payne Richard, Vanden Bossche Robin, Miettinen Karel, Espoz Javiera, Purnama Purin Candra, Kellner Franziska, Seppänen-Laakso Tuulikki, O'Connor Sarah E, Rischer Heiko, Memelink Johan, Goossens Alain

机构信息

Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium;

Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands;

出版信息

Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8130-5. doi: 10.1073/pnas.1504951112. Epub 2015 Jun 15.

Abstract

Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix-loop-helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures.

摘要

植物会产生特殊的生物活性代谢产物来抵御攻击者。保守的控制机制基于植物激素茉莉酸对各个植物物种特异性生物合成途径的转录激活。对于所涉及的转录因子,尤其是在萜类生物合成中的转录因子,了解仍然不完整。通过对药用植物长春花(马达加斯加长春花)进行转录组分析和功能筛选,长春花是单萜吲哚生物碱(MIA)类抗癌药物长春新碱和长春碱的独特来源,我们从IVa进化枝中鉴定出一种茉莉酸调节的碱性螺旋-环-螺旋(bHLH)转录因子,它可诱导MIA途径的单萜分支。bHLH环烯醚萜合成1(BIS1)转录因子激活了所有编码酶的基因的表达,这些酶催化普遍存在的萜类前体香叶基二磷酸依次转化为环烯醚萜马钱子酸。BIS1与先前鉴定的乙烯反应因子十八烷酸衍生物响应长春花APETALA2结构域3(ORCA3)以互补方式起作用,ORCA3激活了几个编码催化马钱子酸转化为下游MIA的酶的基因的表达。与ORCA3不同,BIS1的过表达足以提高长春花悬浮细胞培养物中高价值环烯醚萜和MIA的产量。因此,BIS1可能是一种代谢工程工具,用于在长春花植物或培养物中可持续地生产高价值MIA。

相似文献

1
The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus.
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8130-5. doi: 10.1073/pnas.1504951112. Epub 2015 Jun 15.
5
is a member of a bHLH gene cluster regulating terpenoid indole alkaloid biosynthesis in .
Plant Direct. 2021 Jan 25;5(1):e00305. doi: 10.1002/pld3.305. eCollection 2021 Jan.
8
Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant.
Phytochemistry. 2019 Mar;159:119-126. doi: 10.1016/j.phytochem.2018.12.017. Epub 2019 Jan 3.
9
The seco-iridoid pathway from Catharanthus roseus.
Nat Commun. 2014 Apr 7;5:3606. doi: 10.1038/ncomms4606.
10
Engineering Catharanthus roseus monoterpenoid indole alkaloid pathway in yeast.
Appl Microbiol Biotechnol. 2022 Apr;106(7):2337-2347. doi: 10.1007/s00253-022-11883-5. Epub 2022 Mar 25.

引用本文的文献

4
The AREB transcription factor SaAREB6 promotes drought stress-induced santalol biosynthesis in sandalwood.
Hortic Res. 2024 Dec 17;12(3):uhae347. doi: 10.1093/hr/uhae347. eCollection 2025 Mar.

本文引用的文献

1
Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6224-9. doi: 10.1073/pnas.1501821112. Epub 2015 Apr 27.
2
Genome-guided investigation of plant natural product biosynthesis.
Plant J. 2015 May;82(4):680-92. doi: 10.1111/tpj.12827. Epub 2015 Apr 11.
3
De novo production of the plant-derived alkaloid strictosidine in yeast.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3205-10. doi: 10.1073/pnas.1423555112. Epub 2015 Feb 9.
4
It is easy to get huge candidate gene lists for plant metabolism now, but how to get beyond?
Mol Plant. 2015 Jan;8(1):2-5. doi: 10.1016/j.molp.2014.08.001. Epub 2014 Dec 11.
5
Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine.
Phytochemistry. 2015 May;113:9-23. doi: 10.1016/j.phytochem.2014.07.023. Epub 2014 Aug 18.
8
A look inside an alkaloid multisite plant: the Catharanthus logistics.
Curr Opin Plant Biol. 2014 Jun;19:43-50. doi: 10.1016/j.pbi.2014.03.010. Epub 2014 Apr 13.
9
The seco-iridoid pathway from Catharanthus roseus.
Nat Commun. 2014 Apr 7;5:3606. doi: 10.1038/ncomms4606.
10
Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation.
Curr Opin Plant Biol. 2014 Jun;19:35-42. doi: 10.1016/j.pbi.2014.03.006. Epub 2014 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验