Silva Lorena C F, Almeida Gabriel M F, Assis Felipe L, Albarnaz Jonas D, Boratto Paulo V M, Dornas Fábio P, Andrade Ketyllen R, La Scola Bernard, Kroon Erna G, da Fonseca Flávio G, Abrahão Jônatas S
Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil.
AQUACEN - Laboratório Nacional de Referencia para Doenças de Animais Aquáticos, Ministério da Pesca e Aquicultura, Universidade Federal de Minas Gerais Belo Horizonte, Brazil.
Front Microbiol. 2015 Jun 1;6:539. doi: 10.3389/fmicb.2015.00539. eCollection 2015.
The complexity of giant virus genomes is intriguing, especially the presence of genes encoding components of the protein translation machinery such as transfer RNAs and aminoacyl-tRNA-synthetases; these features are uncommon among other viruses. Although orthologs of these genes are codified by their hosts, one can hypothesize that having these translation-related genes might represent a gain of fitness during infection. Therefore, the aim of this study was to evaluate the expression of translation-related genes by mimivirus during infection of Acanthamoeba castellanii under different nutritional conditions. In silico analysis of amino acid usage revealed remarkable differences between the mimivirus isolates and the A. castellanii host. Relative expression analysis by quantitative PCR revealed that mimivirus was able to modulate the expression of eight viral translation-related genes according to the amoebal growth condition, with a higher induction of gene expression under starvation. Some mimivirus isolates presented differences in translation-related gene expression; notably, polymorphisms in the promoter regions correlated with these differences. Two mimivirus isolates did not encode the tryptophanyl-tRNA in their genomes, which may be linked with low conservation pressure based on amino acid usage analysis. Taken together, our data suggest that mimivirus can modulate the expression of translation-related genes in response to nutrient availability in the host cell, allowing the mimivirus to adapt to different hosts growing under different nutritional conditions.
巨型病毒基因组的复杂性引人入胜,尤其是存在编码蛋白质翻译机制组成部分的基因,如转运RNA和氨酰-tRNA合成酶;这些特征在其他病毒中并不常见。尽管这些基因的直系同源物由其宿主编码,但可以推测拥有这些与翻译相关的基因可能代表感染期间适应性的增强。因此,本研究的目的是评估在不同营养条件下,米米病毒在感染卡氏棘阿米巴期间与翻译相关基因的表达情况。对氨基酸使用情况的电子分析显示,米米病毒分离株与卡氏棘阿米巴宿主之间存在显著差异。通过定量PCR进行的相对表达分析表明,米米病毒能够根据变形虫的生长条件调节八个与病毒翻译相关基因的表达,在饥饿条件下基因表达的诱导更高。一些米米病毒分离株在与翻译相关的基因表达上存在差异;值得注意的是,启动子区域的多态性与这些差异相关。两个米米病毒分离株在其基因组中未编码色氨酰-tRNA,根据氨基酸使用分析,这可能与低保守压力有关。综上所述,我们的数据表明,米米病毒可以根据宿主细胞中的营养可用性调节与翻译相关基因的表达,使米米病毒能够适应在不同营养条件下生长的不同宿主。