Suppr超能文献

鸵鸟(鸵鸟属骆驼)骨盆肢的肌肉结构与功能解剖学

Muscle architecture and functional anatomy of the pelvic limb of the ostrich (Struthio camelus).

作者信息

Smith N C, Wilson A M, Jespers K J, Payne R C

机构信息

Structure and Motion Laboratory, The Royal Veterinary College, London, UK.

出版信息

J Anat. 2006 Dec;209(6):765-79. doi: 10.1111/j.1469-7580.2006.00658.x.

Abstract

The functional anatomy of the pelvic limb of the ostrich (Struthio camelus) was investigated in order to assess musculoskeletal specialization related to locomotor performance. The pelvic limbs of ten ostriches were dissected and detailed measurements of all muscle tendon units of the pelvic limb were made, including muscle mass, muscle length, fascicle length, pennation angle, tendon mass and tendon length. From these measurements other muscle properties such as muscle volume, physiological cross-sectional area (PCSA), tendon cross-sectional area, maximum isometric muscle force and tendon stress were derived, using standard relationships and published muscle data. Larger muscles tended to be located more proximally and had longer fascicle lengths and lower pennation angles. This led to an expected proximal to distal reduction in total muscle mass. An exception to this trend was the gastrocnemius muscle, which was found to have the largest volume and PCSA and also had the highest capacity for both force and power production. Generally high-power muscles were located more proximally in the limb, while some small distal muscles (tibialis cranialis and flexor perforatus digiti III), with short fibres, were found to have very high force generation capacities. The greatest proportion of pelvic muscle volume was for the hip extensors, while the highest capacity for force generation was observed in the extensors of the ankle, many of which were also in series with long tendons and thus were functionally suited to elastic energy storage.

摘要

为了评估与运动性能相关的肌肉骨骼特化情况,对鸵鸟(鸵鸟属骆驼鸵鸟)骨盆肢的功能解剖进行了研究。解剖了十只鸵鸟的骨盆肢,并对骨盆肢的所有肌肉肌腱单位进行了详细测量,包括肌肉质量、肌肉长度、肌束长度、羽状角、肌腱质量和肌腱长度。利用标准关系和已发表的肌肉数据,从这些测量中得出了其他肌肉特性,如肌肉体积、生理横截面积(PCSA)、肌腱横截面积、最大等长肌力和肌腱应力。较大的肌肉往往位于更靠近近端的位置,肌束长度更长,羽状角更低。这导致了从近端到远端总肌肉质量的预期减少。这种趋势的一个例外是腓肠肌,它被发现具有最大的体积和PCSA,并且在力量和功率产生方面也具有最高的能力。一般来说,高功率肌肉位于肢体更靠近近端的位置,而一些小的远端肌肉(胫骨前肌和第三趾长屈肌),纤维较短,被发现具有非常高的力量产生能力。骨盆肌肉体积的最大比例是髋伸肌,而在踝关节伸肌中观察到最高的力量产生能力,其中许多伸肌也与长肌腱串联,因此在功能上适合弹性储能。

相似文献

1
Muscle architecture and functional anatomy of the pelvic limb of the ostrich (Struthio camelus).
J Anat. 2006 Dec;209(6):765-79. doi: 10.1111/j.1469-7580.2006.00658.x.
2
Ontogenetic scaling of pelvic limb muscles, tendons and locomotor economy in the ostrich ().
J Exp Biol. 2019 Sep 3;222(Pt 17):jeb182741. doi: 10.1242/jeb.182741.
3
Functional specialisation of pelvic limb anatomy in horses (Equus caballus).
J Anat. 2005 Jun;206(6):557-74. doi: 10.1111/j.1469-7580.2005.00420.x.
4
Anatomical description of the muscles of the pelvic limb in the ostrich (Struthio camelus).
Anat Histol Embryol. 2004 Apr;33(2):100-14. doi: 10.1111/j.1439-0264.2003.00522.x.
5
Muscle moment arms of pelvic limb muscles of the ostrich (Struthio camelus).
J Anat. 2007 Sep;211(3):313-24. doi: 10.1111/j.1469-7580.2007.00762.x. Epub 2007 Jun 30.
6
Dynamics of goat distal hind limb muscle-tendon function in response to locomotor grade.
J Exp Biol. 2009 Jul;212(Pt 13):2092-104. doi: 10.1242/jeb.028076.
7
Functional specialisation of the pelvic limb of the hare (Lepus europeus).
J Anat. 2007 Apr;210(4):472-90. doi: 10.1111/j.1469-7580.2007.00704.x. Epub 2007 Mar 15.
8
Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).
J Anat. 2008 Oct;213(4):361-72. doi: 10.1111/j.1469-7580.2008.00961.x. Epub 2008 Jul 22.
9
The Tarsometatarsus of the Ostrich Struthio camelus: Anatomy, Bone Densities, and Structural Mechanics.
PLoS One. 2016 Mar 25;11(3):e0149708. doi: 10.1371/journal.pone.0149708. eCollection 2016.

引用本文的文献

1
Fast ground-to-air transition with avian-inspired multifunctional legs.
Nature. 2024 Dec;636(8041):86-91. doi: 10.1038/s41586-024-08228-9. Epub 2024 Dec 4.
2
Muscle-controlled physics simulations of bird locomotion resolve the grounded running paradox.
Sci Adv. 2024 Sep 27;10(39):eado0936. doi: 10.1126/sciadv.ado0936. Epub 2024 Sep 25.
3
From fibre to function: are we accurately representing muscle architecture and performance?
Biol Rev Camb Philos Soc. 2022 Aug;97(4):1640-1676. doi: 10.1111/brv.12856. Epub 2022 Apr 7.
4
Whole-limb scaling of muscle mass and force-generating capacity in amniotes.
PeerJ. 2021 Nov 29;9:e12574. doi: 10.7717/peerj.12574. eCollection 2021.
5
On the 3D Nature of the Magpie (Aves: ) Functional Hindlimb Anatomy During the Take-Off Jump.
Front Bioeng Biotechnol. 2021 Jun 29;9:676894. doi: 10.3389/fbioe.2021.676894. eCollection 2021.
7
3D Muscle Architecture of the Pectoral Muscles of European Starling ().
Integr Org Biol. 2019 Feb 1;1(1):oby010. doi: 10.1093/iob/oby010. eCollection 2019.
9
Design and Analysis of the Bionic Mechanical Foot with High Trafficability on Sand.
Appl Bionics Biomech. 2020 Jul 11;2020:3489142. doi: 10.1155/2020/3489142. eCollection 2020.
10
Normal anatomical and diagnostic imaging techniques of the musculotendinous structures of the ostrich () foot.
J Adv Vet Anim Res. 2020 Apr 13;7(2):242-252. doi: 10.5455/javar.2020.g416. eCollection 2020 Jun.

本文引用的文献

1
Tibiofibular junction of the South African ostrich (Struthio camelus australis).
J Morphol. 1996 Feb;227(2):213-226. doi: 10.1002/(SICI)1097-4687(199602)227:2<213::AID-JMOR7>3.0.CO;2-9.
2
The relation between force and speed in muscular contraction.
J Physiol. 1939 Jun 14;96(1):45-64. doi: 10.1113/jphysiol.1939.sp003756.
3
Structural and functional anatomy of the neck musculature of the dog (Canis familiaris).
J Anat. 2006 Mar;208(3):331-51. doi: 10.1111/j.1469-7580.2006.00533.x.
4
Biomechanics: no force limit on greyhound sprint speed.
Nature. 2005 Dec 8;438(7069):753-4. doi: 10.1038/438753a.
5
Functional specialisation of pelvic limb anatomy in horses (Equus caballus).
J Anat. 2005 Jun;206(6):557-74. doi: 10.1111/j.1469-7580.2005.00420.x.
6
The role of the extrinsic thoracic limb muscles in equine locomotion.
J Anat. 2005 Feb;206(2):193-204. doi: 10.1111/j.1469-7580.2005.00353.x.
9
Force-velocity properties of two avian hindlimb muscles.
Comp Biochem Physiol A Mol Integr Physiol. 2004 Apr;137(4):711-21. doi: 10.1016/j.cbpb.2004.02.004.
10
Anatomical description of the muscles of the pelvic limb in the ostrich (Struthio camelus).
Anat Histol Embryol. 2004 Apr;33(2):100-14. doi: 10.1111/j.1439-0264.2003.00522.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验