Feischl Michael, Gantner Gregor, Praetorius Dirk
Vienna University of Technology, Institute for Analysis and Scientific Computing, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
Comput Methods Appl Mech Eng. 2015 Jun 15;290:362-386. doi: 10.1016/j.cma.2015.03.013.
We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence.
我们考虑二维第一类弱奇异积分方程的伽辽金边界元法(BEM)。我们分析了一些残差型后验误差估计器,它为未知的伽辽金边界元法误差提供了下界和上界。所需的假设很弱,允许边界的分段光滑参数化、局部网格细化以及相关的标准分段多项式和非均匀有理B样条(NURBS)。特别地,我们的分析在等几何分析(IGABEM)框架下为自适应边界元法做出了首个贡献,为此我们制定了一种自适应算法,该算法控制局部网格细化和节点的重数。数值实验证实了理论结果,并表明所提出的自适应策略导致最优收敛。