Suppr超能文献

用于弱奇异积分方程的自适应等几何分析边界元方法的可靠且高效的后验误差估计

Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations.

作者信息

Feischl Michael, Gantner Gregor, Praetorius Dirk

机构信息

Vienna University of Technology, Institute for Analysis and Scientific Computing, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.

出版信息

Comput Methods Appl Mech Eng. 2015 Jun 15;290:362-386. doi: 10.1016/j.cma.2015.03.013.

Abstract

We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence.

摘要

我们考虑二维第一类弱奇异积分方程的伽辽金边界元法(BEM)。我们分析了一些残差型后验误差估计器,它为未知的伽辽金边界元法误差提供了下界和上界。所需的假设很弱,允许边界的分段光滑参数化、局部网格细化以及相关的标准分段多项式和非均匀有理B样条(NURBS)。特别地,我们的分析在等几何分析(IGABEM)框架下为自适应边界元法做出了首个贡献,为此我们制定了一种自适应算法,该算法控制局部网格细化和节点的重数。数值实验证实了理论结果,并表明所提出的自适应策略导致最优收敛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ec6/4456116/c62c71cab2ad/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验