Aurada M, Feischl M, Karkulik M, Praetorius D
Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
Eng Anal Bound Elem. 2012 Feb;36(2):255-266. doi: 10.1016/j.enganabound.2011.07.017.
Only very recently, Sayas [The validity of Johnson-Nédélec's BEM-FEM coupling on polygonal interfaces. SIAM J Numer Anal 2009;47:3451-63] proved that the Johnson-Nédélec one-equation approach from [On the coupling of boundary integral and finite element methods. Math Comput 1980;35:1063-79] provides a stable coupling of finite element method (FEM) and boundary element method (BEM). In our work, we now adapt the analytical results for different a posteriori error estimates developed for the symmetric FEM-BEM coupling to the Johnson-Nédélec coupling. More precisely, we analyze the weighted-residual error estimator, the two-level error estimator, and different versions of (h-h/2)-based error estimators. In numerical experiments, we use these estimators to steer h-adaptive algorithms, and compare the effectivity of the different approaches.
直到最近,赛亚斯[《约翰逊 - 内德莱克在多边形界面上的边界元法 - 有限元法耦合的有效性》。《工业与应用数学学会杂志:数值分析》2009年;47卷:3451 - 3463页]证明了[《关于边界积分法与有限元法的耦合》。《数学计算》1980年;35卷:1063 - 1079页]中的约翰逊 - 内德莱克单方程方法提供了有限元法(FEM)和边界元法(BEM)的稳定耦合。在我们的工作中,我们现在将为对称有限元法 - 边界元法耦合开发的不同后验误差估计的分析结果应用于约翰逊 - 内德莱克耦合。更确切地说,我们分析加权残差误差估计器、两级误差估计器以及基于(h - h/2)的不同版本的误差估计器。在数值实验中,我们使用这些估计器来引导h自适应算法,并比较不同方法的有效性。