Hua Zhaowei, Zhu Hongtu, Dunson David B
Department of Biostatistics, University of North Carolina at Chapel Hill.
Department of Statistical Science, Duke University.
Stat Biosci. 2015 May 1;7(1):90-107. doi: 10.1007/s12561-013-9104-y.
In longitudinal data analysis, there is great interest in assessing the impact of predictors on the time-varying trajectory in a response variable. In such settings, an important issue is to account for heterogeneity in the shape of the trajectory among subjects, while allowing the impact of the predictors to vary across subjects. We propose a flexible semiparametric Bayes approach for addressing this issue relying on a local partition process prior, which allows flexible local borrowing of information across subjects. Local hypothesis testing and credible bands are developed for the identification of time windows across which a predictor has a significant impact, while adjusting for multiple comparisons. Posterior computation proceeds via an efficient MCMC algorithm using the exact block Gibbs sampler. The methods are assessed using simulation studies and applied to a yeast cell-cycle gene expression data set.
在纵向数据分析中,人们对评估预测变量对响应变量随时间变化轨迹的影响非常感兴趣。在这种情况下,一个重要的问题是在考虑预测变量对不同个体影响不同的同时,还要考虑个体间轨迹形状的异质性。我们提出了一种灵活的半参数贝叶斯方法来解决这个问题,该方法依赖于局部划分过程先验,允许在不同个体间灵活地局部借用信息。为了识别预测变量具有显著影响的时间窗口,同时调整多重比较,我们开发了局部假设检验和可信区间。后验计算通过使用精确块吉布斯采样器的高效MCMC算法进行。我们通过模拟研究对这些方法进行了评估,并将其应用于酵母细胞周期基因表达数据集。